Homework 7 solutions (Chapter 6)

5. a. Exponential(100) (ime measured in hours) or Expcnentia]f ii} (time measured in
minutes).
c. Lognommal(y, o). There is insufficient information in the statement of the question
to specify p and . Note that this is an approximate model. The precise value of the
security after one year is Xj X; - - - X; where X; is the accumulation of a $1 investment
in the j-th day and » 1s the number of rading days. By assumption, the X; are mdepen-
dent, identically distibuted, and positive random variables. Since » is reasonably large,

the multiplicative form of the central limit theorem applies. Hence
X X;- - -X, ~ Lognommal(u, o) where u, o are the mean and standard deviation of

loglX; X;- - -X,].

d. Exponential(3), ime measured in months. Since the failure rate is constant, there is
no aging. Consequently, the distribution is exponential.

€. Uniformlv distributed on (0, 50), 1., DeMoivre(30), in miles.

f. Gamma(1000, 5) n minutes.

g. Nonna]{f-?, *-.-’T] inches. Sample data on populations suggest that heights have a
distribution that is approximately nommal .

1. Exponential(3/2) m minutes. Suppose that 77 is the ime in minutes for the experi-
enced representative to finish serving the current customer and T is the time In mimites
for the trainee to finish serving the current customer. Then X = min(Ty, 72). A reason-
able model for individual service times is the exponential distribution. Under this
assumption, 77 ~ Exponential(l) and T5 ~ Expcmf:nﬁall[ %} (Note that T3 and > repre-
sent the remaining service imes. However, since exponential distributions have the
memoryless property, the distribution of the remaining service time for an individual 1s
the same as the distmbution of the total service time for that individual ) If T and Ts are
independent (a reasonable assumption for service times), then their minimum must also
have an exponential distribution with parameter equal to the sum of the parameters of

the T; (see section 6.1.1). Hence X is exponentially distributed with parameter

1 3 -
1+ ;= =, as claimed.



6. This exercise 15 simular to exercises 7 amd 8 of section 5.5 where students were asked to
fit a discrete distribution to a given set of data. In this exercise, students are asked to fit
a continnous distribution to a given set of data that is associated with a particular
monetary quantity.

a. Strictlv spealing, monetary quantities are discrete since every monetary amount is a
diserete multiple of the smallest monetary unit available. For example, every insurance
claim amount can be expressed as a whole nomber of pennies. With this approach, the
mumber of possible monetary values is large and the probability of the given quantity (in
this case the claim size) assuming any particular value is small. From section 4.1 3, we
know that a discrete quantity with these characteristics can be approximated quite well
using a continuons distribution. By takung this approach, we can obtain a model for the
claim size that is considerably simpler, but not significantly less accurate, than a
discrete model.

b. Let X be the claim amount in hundreds of dollars and let [, denote the empirnical
relative frequency density function determined in the way outlined in the question.

Then [ is given by

7,[01=0056, 7 [05]=0304, f [10]=0368, 7 _[15]=0334, 7 [20]=0270,
F4[251=0206, 7,[301=0.150, f,[351=0118, f,[40]=0074,
F4[451=0050, 7,[501=0034, f,[55]1=0022, 7. [60]=0014

Note that since the values of 7, represent relative frequency densities, not relative
frequen-:les we should not expect these values to sum to 1. In determuining the values of

fx [0] and fx[ﬁ 0], it was assumed that the probability on ﬂlf.‘ intervals ¥ = 25 and
x =375 respectively is distnbuted over intervals of length 5. This assumption 15 a bit
arbitrary, but it is reasonable to make since the lengths of the intervals used in the

estimation of /. [x] for x=0.5,10, ..., 5.5 are all equal to

ba | =
.

c. Using the formula



E[X]~ ) & F I (Ax),

the implied first and second moments are respectively

1 1

E[X] ﬁ(ﬂ}fx[t}]-[g]+{t}.53fI[D.S]-(E

(0 (0.056)(035) + (03)(0.304)(05) + - - -+(6.0) (0014 (0.5)=19175
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]+ - -+{6.03fx[6.ﬂ]-( ]=
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A 1 N 1 N 1
2 2 1= =2 _ 2 1Zl=5 .
E[X]Rj{m fx[{l][ ]+m3} fX[O.S][ ]+ +(6.0)" £ [6.0] [2] 5.24963.

Hence the implied mean and vanance are
E[X]=19175,

Var (X) = 524963 — (1.9175)* = 1.57282375.

d. For the gamma distribution with parameters » and A we have
r

E[X] = -
r
l_

Equating these expressions to the implied mean and variance determined in part ¢, we
have
r

—=19175,

A

r

— =157282375.
:{2

Dividing the first of these equations by the second, we get
1.9175

A= —— =1 21914487
157282375



Substituting this into either equation, we then obtain
r=233771028.

Hence to the nearest whole integer, we have

r=2 A=1.

For these values of the parameters, the gamma distribution has density function

flxl=xe™ forx=0

and survival funetion
Sxl=(1+x1e™™ forx=0.

The table that follows compares this gamma density to the empirical relative frequency
density function

X }X[.r] xe™* ;x[x] fll.-"lll[_:c e ")
0 0.056 0 undefined
05 0304 0303265 1.00242
10 0368 0367879 1.00033
15 0334 0334695 0.907923
20 0270 0270671 0007523
25 0206 0205212 100354
30 0.150 0.149361 1.004235
35 0118 0.105691 111646
40 0074 00732626 1.01007
45 0050 00490005 1.00019

50 0.034 00336897 1.00921



55 0022 00224772 0.978768
60 0014 00148725 0.941334

From this table, the fit of the gamma distribution with 7 =2 and A = 1 appears to be quite
good. To confirm this belief, we would need to perform a statistical test that measures
in a quantitative way the fit of this distribution. Such tests are covered in books on
statistical estimation and lie beyond the scope of this book.

€. Let Fy be the cumulative relative frequency function for the given data set. In tlus
part, we analyze the fit of the gamma distribution with parameters r=2 and A =1 by

comparing Fy to the function 1 — (1 + x) e™*, whuch is the distribution function for
Gamma(?, 1), at the pomnts x = 025, 0.75, 125, ., 575 Note that the comparnison
points ¥ used here are different from the ones vsed in part d. The reason for thas is that

the values of the empirical function Fy are only known at these points.

The table that follows compares F x to the function 1 — (1 + x) ™

X I?X[.r] 1-(1+x)e™ }?"x[.r] — {1 —=il+x)e™"}
025 0028 0026499 000150098

0.75 0.180 0.173359 000664147

125 0364 0355364 000863579

175 0531 0522122 000887834

2325 0.666 0657453 000854748

275 0769 0760271 000872948

325 0844 0.83521 0.008790038

375 0903 08858291 00147093

4725 0940 0925113 001483872

475 0965 0950253 00147472



325 0.982 0.967203 0.014797
575 0.993 0.978516 00144838

This table, like the one in part d, suggests that the fit of the gamma distribution with

r=2and A =11s good.

f. Using the approximation X ~ Gamma(2, 1) we have

Prld =X =425]=Pr[X =4 25] - Pr[X = 4] + Pr[X =4] = )
[1-(1+425) ™) -[1-(1+9 e} +0=5¢""-525¢" ~ 01669097,

Pr{X =6] =Pr[X > 6] + Pr[X =6] = (1 +6) e + 0=T e = 01735127,

and
PriX =025]=1-(1+025) e =1-125¢7"% » 02649002.
Mote that there 15 no correction for continuity in this caleulation becanse X can assume

fractional as well as whole oumber values. Continuity corrections are generally only
applied when the discrete variable in question has integer values.

7. The purpose of this question is to give the reader practice recognizing the moment
generating functions of special continuous distbutions, and to remind the reader of the
nniqueness property for moment generating functions (section 4.3.1).

a. Exponential(l) or equivalently, Gamma(l,1)

b. Gamma(%, %]

. Normal(Q, 1)

d. Normal(1,y2)

8. In each part of this question, one must first recognize the given moment generating
function as the moment generating function of a particular special distribution. Then
nsing the nmuigueness property of the moment generating function and properties of the
identified special distribution, it is straightforward to determine E[X], Var(X),

Pr[X = 1], and Pr[-1 < X = 1].

a. A random variable X with moment generating function Mx[t] = Exp[l‘ + %] mmst have
a normal distribution with mean 1 and standard deviation 1,1.e., X ~ Normal(l, 1).



Hence

E[X]=1,

Var (X)=1,

X-1
1

1
Pr[X = l]:PI‘ :sG‘ZPI[erﬂ]Z;,

and
X-1
Pi[-1=X=1]= PI{—E < . = ﬂ'j =
Pr[-2=Z2<0]=Pi[0 =« Z < 2] =®[2] —P[0] = 0772 - 5= 4772,

where £ ~ Normal(0, 1) and &€ is the distribution function for 7. The numerical values
of @ are obtained from Appendix E of the textbook.

b. A random variable X with moment generating function My[#] =(1/(1 - 17 must
have a gamma distribution with parameters r=3and A =1,1e., X ~ Gamma(3, 1).
Hence

E[X] =3,
Var (X) =3,

2 1" E_l 1 1 1 5
PrlX = 1] = 5x[1] =Z =g} { +—+ } =—e!,
= ™ or 1v 2

and
Pil-1<=X=1]=
5 5
Prf0 =X =<1]=1-F[X=1]=1-FP[¥=1]-Px[X=1]=1- ;e'l -0=1- Ee'l.
Note the use of the formula

r—1 l:.]. .r)ﬂ E—.l.l’

Sxlx]= Z

n=0 n!

for r a positive integer, which is derived in section 6.1.2 of the textbook. Note further



that Pr_[—l =X < 1]_: Pr[0 = X « 1] since the gamma distribution assigns no probability
to negative values and Pr[X = 1] =0 since the gamma distribution 1s continuons.

¢. A random variable X with moment generating function Mx[t] = 3/(3 — #) must have
an exponential distribution with parameter A = 3. Hence

1
E[X]=—,

3

1 1
Var(X)= — = —,
32 9

PrlX = 1]=5¢[1] =3 M = g3,

and

Pi[-1=X<1]=
P0=X<1]=1-P[Xz1]=1-Pr[X=>1]-Pr[X=1]=1-¢" -0=1-¢"".

. Let T;, T, be the total service times for the left and right machines respectively and let
I{. I7 be the corresponding remaining service times. Let T be the waiting time until the
first machine becomes available when both machines are in use. Suppose that T;, T, T7,
T:,and T are all measured in seconds. Then T = min(T}, T:}.

We are not explicitly told what models to use for T; and T, In the interest of simplicity,
let's assume that both T and T; have exponential distributions. Since the exponential
distribution has the memoryless property it follows from this assumption that T} and T;
are exponentially distributed with T} ~ Ty and T ~ T,. Note that in this context the
memoryless property means that knowledge of the time that a machine has already
spent servicing a customer has no effect on the distribution of the remaining service
time. This is not an vnreasonable assumption to make in this context as anyone who has

stood behind a customer performing multiple transactions can attest! Since the average
service times are 30 seconds and 20 seconds for the left and right machines respectively,

it follows that T ~ Exponfnl.i:ﬂ[. %} Ty~ Expnnential". :-l_u] and also
If ~ Exponcnﬁal(% ] Y E.xpomntia]{ %)

In section 6.1.1, it was shown that if 77 ~ Exponentialii; ), T> ~ Exponential(d;) and T3,
T are independent then min(Ty, T>) ~ Exponential(d; + A2). Since T = mjn[Tf, T:}, it



e e - . 111 .
follows that T has an exponential distribution with parameter A = TR

T~ E.Kpﬂﬂf'ﬂliﬂl[liq ). This fact will be used to answer parts a through e.

a. Since T wExpnnenﬁal[li,__}, we have E[T] = 12. Hence the person at the front of the
line should expect to wait 12 seconds.

b. The desired probability is

Pr[T > 15] = e /1% =74 & 2865.

¢. From part a, the expected waiting time for a person at the front of the line is 12
seconds. Hence we should expect the line to move every 12 seconds. It follows that the
person who is currently third in line should expect to wait 36 seconds. This result can

also be derived more formally using the approach outhined in part d.
e. To answer the question of this part, we need only consider the machine on the left.

The desired probability is
PrT; = 60] = e = e~ & 1353,

10. On a previous key.

11.Let Ty be the time required to make a withdrawal, let I3 be the time required to pay a
bill, and let T be the time required to make a deposit. Let J be a random variable that

mdicates the type of transaction defined as follows:

J=1 if transaction is withdrawal,
J=2 if transaction is bill payment,
J=3 if transaction is deposit.

Let T be the service time for the next customer. Suppose that Ty, 75, 75, and T are

measured m seconds. Then from the given information we have

1 1 1
T, -»Expmential[ﬁ], szExpnnfnLial[E], T, -»Expmeutial[ﬁ],

and
pr[11=70, p;[2]= 20, p;[3]=10.

Hence by the law of total probability, the desired probability is
PrT =201 =Pr[T>20 | J=1]1Pi7 =1] +
Pr[T =20 | J=2]Pe[J=2] + Pr[T =20 | J=3]Pt[J=3] =
PrlT} = 20] PrlJ = 11 + Pi[T> = 201 Pr[J = 2] + Pu[Ts = 201 Pi[J = 3] =
e 23 (70) + €729 (20) + €700 (10) =
TJ0e ™ + 207 + 10€7°P ~ 34141579 = 34 %.



12 a. Let T be the time in minutes uotil the next printing job arrives. Since print jobs
arrive randomly and independently at a constant average rate of 20 per hour, a
reasonable model for T 1s Exponential{l) where A =20/60 =1/3. Hence the deswed

probability 1s

Pr[T >5]=¢" 1889 %.

b. Let T* be the time in minutes to process a given print job. By assumption T is
exponentially distributed. Since the average job is 10 pages long and the printer is
capable of printing 8 pages per minute, it follows that the average job takes % minutes
to print. Hence T* ~ Exponential(0.8) and the desired probability is

Pr(T* > 2] = 8@ =19 52019 %.

c. Let T be the total time in munutes to process the current job. From part b, it follows
that T* ~ Exponentiali0 8). Hence the desired probability is

Pr[T* > 6] e 080
= — =¥ 244903 %.
Pi(T*>5] 0806

PT* =6 | T° > 5] =

We counld also have denved this result by considering the time remaining, which by the
memoryless property of the exponential distribution is Exponential(0.3).
d. Let T} be the time remaining to process the active job and let 75, T3, T3, T be the
process times for the jobs waiting in the queue ahead of the job just subnutted. Let T be

the time until processing of the job just submitted begins. Then
IT=T{+T;+T; +T; +T:. Supposethat T, T7.T5.T5.T;. T: are measured in nun-

utes. Then arguing as in part b we have T ~ Exponential(0.8) for j=2,3.4, 5. We
also have T7 ~ Exponential(0.8) using the memoryless property of the exponential
distribution (as discussed in part ¢). Since the T; are independent, it follows from
section 6.1.2 that 77 + --- + T3 ~ Gamma(5, 0.8) . Hence for 7 =0,

4 '['[] g r}n E—I}.Er

PI[T:}T]:Z

|
n=0} n!

Therefore the desired probabilities are

4 4n g4 32 32y 103
PI[T:}5]=Z =e‘4{1+4+3+—+—}=—e“‘x.ﬁZSSSﬁQd
3

ol 1 3 3
and
4 gnet 256 512
Pt[T:}ID]=Z =e-3{1+3+32+—+—}:zg?ﬁm_ﬂg@mzqﬂ_
n! 3 3

-l



13 Let X; be the accumulation factor for the j-th trading day. By assumption, the X; are
independent and identically distributed with probability distribution given by
1.02  with probability 50,
i { 0.99 with probability 50.

Since the current price of the stock is $100, its price n trading days hence is
Sp =100 X; X5 ---X,. We are interested in determining Pr[55p = 200].

Note that the possible values of 5, are

100 (0.99)" . 100(0.99"! (1.02), 100(0.99)" > (1.02),
... 100(0.99) (102", 100(1.02)"

with respective probabilities



f f n n
(500", (1](.5{l]", (2)1'.5{!]", (H_l](_SD}“, (HJLSG}“.

Since

100 (0.99)"* (1.02)* = 200 < (099 F(102f>2 =
(n—£)log[0.99] + klog[1.02] =1log[2] &
£ {log[1.02] —1og[0 997} =log[2] — nlog[0 99] =

1.02 log[2] — nlog[0.99]

klog 0.00 log[%]

=log[2] —nlog[099] = k=

it follows that

Pr[S, = 200] = Z [:) (50)"

E=k*
where
log[2] — nlog[D.99]
Kk =Int +1.
log[1.02/099]

Here Int[x] denotes the integer part of x, 1.e., the greatest integer less than or equal to x.
For n = 50 we have £* = 41. Hence

S0

50
Pr[S50 = 200] = Z [ . ] (50077

k=41
14.Let X; be the dollar increase on the j-th trading day. By assumption the X; are indepen-
dent and identically distributed with probability distribution given by
2 with probability 50,
X= { ~1 with probability 50.

Since the current price of the stock is $100, its price n trading days hence is



S,=100+23; + 3, +-- + X

We are interested in determining Pr{5sp = 145].

Let I; be an indicator of a price increase on the j-th trading day. Then
I; ~ Binomial[1, .50] and

X;=3I;-1.

Hence
Sp=100+3(L +---+L)—n=100—n+37

where ¥ =1} +-++ + I, ~ Binonual[n, 50]. Consequently,

n n "
Pr[S, = 145] =Pr[100 —n + 3 Y = 145] :Pr[l’:r—- 15+ gl = Z[k]{_‘?{]]”
k=k*

where £* =15 + E] +1=16+ E] Here [x] denotes the integer part of x,1e_, the
greatest integer less than or equal to x. For n =50 we have k¥ =32. Hence
50
50
PrSs0 > 145] = [ . ] (.50°°.

k=32



Hence
P[5 = 145] = 0324543,

An alternative approach to detenmiming Pr[5sy = 145] 15 to use a normal approxmation
for 5,. From the definition of X; we have
E[X;] = (2)(50) + (-1) (50) = 0.50,

Var (X)) = E[X]] - E[X;]" = {(2)? (:50) + (-1)* (:50)} - (0.50)* =2.25.
Hence

E[S,] =100 + ) E[X;]=100+ ;
=1 =

n
Var (S,) = ) Var(X;)=225n,
=1
where the formmla for the variance follows from the independence of the X;. It follows
that for n sufficiently large,

M
o xNﬂmml(lﬂﬂ +—.15 1.,."?)
)

Using this approximation and correcting for continmity we have
Pi[Ssp = 145] =
S5 — 125 1455-125

15v50 15450

where Z ~ Normal(Q, 1) and & is the distrbution fonction of 7. From the tables in
Appendix E and vsing linear interpolation we have
B[19328] = (T2 P[193] +(28)B[194] = (T2 (9732) + (28)(.9738) = 073368.

Pr[Ssp = 1455]=Pr ‘ = Pr[Z£ =19328] =1 — $[1.9325]

Consequently,
PS50 = 145] = 1 — @[ 9328] = 1 — 973368 ~ 02663,



15 a. Binomial(300, 03)
b. Poisson(125)
c. Exponential(d). There is insufficient information to specify A.

d. Exponential(1). There is insufficient information to specify 1. Note the use of the
memoryless property.

e. Poisson(250)

f. Geometric(.10)

g. Exponential(145) vears. Suppose that T 1s the time in vears until the next variable
rate mortgage 1s prepaid, T5 is the ttme in vears until the next 15-vear fixed rate mort-
gage is prepaid, and T3 15 the time in years until the next 30-year fixed rate mortgage is
prepaid. Then X = min(T;, T3, T3) and Ty ~ Exponential(100), T> ~ Exponential(35),
T3 ~Exponential(10). Since the T; are independent and exponentially distributed, their
minimm is also exponentially distributed with parameter equal to the sum of the
parameters of the Tj (see section 6.1 1, "Effect of Anthmetic Operations"). Hence X is
exponentially distributed with parameter 100 + 35 + 10 = 145, as claimed.

1. Poisson(110). Let N; be the number of health-related claims in a given day, let N> be
the number of auto-related claims in a given day, and let N'; be the number of life-



related claims in a given day. Since claims arrive randomly and independently at a
constant rate, it is reasonable to model Ny, N>, and N3 vsing mutvally independent
Poisson distributions. Let A5, A7, A3 be the parameters for these three respective Poisson
distributions. Then the total number claims in a given day, Ny + N> + N;, has a Poisson
distribution with parameter A; + A> + A;. Since the average number of claims received
in total on a given day is 100, the value of the Poisson parameter for Ny + N> + Nj is
100,18, A1 + A2 + A3 = 100. We are given that 55% of all claims are health-related.
Hence the average number of health-related claims received on a given day is 55 (55%
of 100). It follows from this that Ny ~ Poisson(];) with 1; = 55. Now suppose that Ni"

is the number of health-related claims received today and N‘fl 15 the number of health-
related claims received tomorrow. Then by the foregoing argunment N{lﬂ ~ Poisson(55)
for j=1, 2 and the 3'-?41"' are independent. Hence Nil:' + N‘f’, which is the number of
health-related claims in the next two days, has a Poisson distribution with parameter

A=55+55=110. Consequently, an appropriate model for the number of health-related
claims in the next two days 1s Poisson(110), as indicated.

Comment.: Part 1 illustrates the disaggregation property of the Poisson distribution.
This 15 a technique that vnder certain conditions allows one to decompose a Poisson
distribution into a sum of independent Poisson distributions. In part 1, the total oumber
of claims in a given day has a Poisson distribution and can be deternuned by adding
together the number of claims of three identifiable types --- health-related claims, auto-
related claims, and life-related claims. The disaggregation property of the Poisson
distribution asserts that for each claim type, the number of claims of that type in a given
day has a Poisson distribution with parameter p A where p is the fraction of claims of
the given type and A is the Poisson parameter for the distribution of the total number of

claims in a given day. This property holds in this case because the claim number
random variables for each claim type are mutually independent.

j. NegativeBinomial(2, 05)
k. Gamma(5, 25) hours

1. Geometric( 01)

16
b. When r 15 a positive integer, Gammal(r, A) can be interpreted as the waiting tume unifil
the r~th arrival where A arrivals are expected per nmt time (see section 6.1.2). Hence for
X ~ Gamma(2, 3), the statement X = 1 has the following interpretation: Either there are
no arrivals in the first unit of time or there is exactly one arrival. Let N be the number
of arrivals in the time interval (0, 1). Then N ~ Poisson(A) where A =3 and so
1 an E—R_
Pr[JI-‘:l]=PI[N=G]+PI[N=1]=Z
n=0

et +dlet=(A+ et =473,
n!



17. Let R be the continuously compounded rate of return over the coming yvear. Then the
price of the stock one year from now is 50 £® and the desired probability is

i’I[ES =50e% = ﬁﬂ] E}f assumption, R ~ Normal(.10, 20). Hence the desired
probability is

55 60 11 6
PI[SEEE{]cRiﬁG]:Prl— =e" = —|=Prllog| — | =R=1log —H:
50 50 10 5
log[11/10]—- .10 R- .10 log[6/5]-— .10
= = =Pr[—0234 =7 = 4116] =
20 20 20

P[.4116] — $[-0234] =P[4116] — (1 — $[0234]) =P[ 4116] + B[0234] -1

where £ ~ Normal(0, 1) and € is the standard normal distribution function. Using the
tables in Appendix E of the textbook and linear interpolation as appropriate, we have

P[4116] = (B84)P[41] + ((16) P[42] = (.84) (.6591) + (.16) (.6628) = 659692

and
SB[ 0234] = (66)E[02] + ( 34)B[.03] = (.66) (5080) + (34) (51200 = 50036,

Consequently, the desired probabality 1s
Pr[55 = 50 €* = 60] ~ 659602 + 50936 — 1= 169052 ~ 17 %.

Note that the median of 50 € is 50 £'? & 55 26 and the expected value of 50 &® is
E[50 €%] = 50 £0+03)(2F = 50 ¢12 5 56.37.

This helps to explain why the probability of the future stock price lying between 55 and
60 is not particularly large.
21.Let X be the number of boys in a nursery with 7 newborns. An exact model for X 15
Binomial(n, p) where p is the probability of getting a boy. We are given that p= 51.

We are interested in analvzing the behavior of PI[JI = :] as 1 increases.

a. When n is even, PI[X = ;] can be determined using a normal approximation with

continuity correction in the following way:

H n 1
PIX':_ZEJ=PIX'=_3 + =
X i L"+1 np "+1 51m 50— 01
—H s +5— ;F5—- S0-01n
Pr P 270 aPrlZ=— > =Pz "
Y 2400 R

Jnpl-p  Jnpd-p V7 (51)(49)




where Z ~ Normal((, 1). Using the tables in Appendix E and linear inferpolation as
appropriate we obtain the following:

For n= 100,

n
PIP.’ = EJ 2 P[—.10002001] = 1 — $[.1000] =~ 1 — 5398 = 4602.

For n =300,

A
PIP_’ = —J 2 @[—A0257276] = 1 — B[ A026] =
2

1 -7 B[A0] + (200 B[ 41T} = 1 — [( T4 (6554) + (26)(6591)) = 343638.
For n= 1000,
b
PI[X = 2] 2 B[— 60005206] = 1 — B[ 6010] =

1-{(00)@[.60] + (10)E[61]} 1 — {(.90)(.7257) + (.10) (.7201)} = 27396,
From the general formula

" S0 —-01n
PIX*_:—‘HPIE*_:—
2 v 2490

it follows that



bl
PI‘X*_:—‘—}{] ASH — oo,
2

This means that as the number of babies in the nursery increases, it becomes more and
more likely that more than half of them are boys. This phenomenon 15 studied in detail
in section § 4 where the law of large numbers is discussed.

b. When the calculations are done without correcting for continmty, we have

| —01n
PIIX*_:—‘HPIZ‘_:— ]
2 v 2400
In particular, for n = 100
H
PI[X = 5 2 ®B[— 20004001 = 1 —=$[2000] = 1 — 5793 = 4207,
for n =500
bl
PI[X = 2 O[—44730306] = 1 — P[4473] =
2

1-{(27)@[44] + (T3 D[ A5]} = 1 - {( 2T)(.6700) + (.73) (.6736)} = 327372,

and for n = 1000

H
PI[I_’*_:—
2

1 —{(.74) (7357) + (26) ((7389)) = 263468

= ®[—.63258200] = 1 — @[.6326] = 1 — [ .74 P[.63] + (26) B[.64]) =

From these calculations, it appears that the impact of the correction for continuity 1s
greater when » 1s small. From part a, we see that the impact of the continuity correction

on the arpument of & 1s .50}.-'"\"'.2499?1 . Which tends to 0 as n — co. Hence the correc-
tion for continuity is most important when » is small.

22 Let X be the number of heads obtained in 1000 tosses of the selected coin and let 7 be an
indicator of the fairness of the coin.1e.,

- { 1 if selected coin 1s fair,
~ |0 if selected coin is biased.

Since the gambler concludes that the coin 1s biased 1f X = 525 and concludes that it 15



fair ot_her;a;isre, the probability that the gambler reaches a false conclusion is, by the law
of total probability,

Pr[X =525 | I=1]P[I=1] + Pr[X <525 | I=0]Pr[I =0].

Comnsider first the quantity Pr[X = 525 | /= 1]. This is the probability of reaching a false
conclusion when the coin being tossed 15 known to be fair. Note that the distribution of
X | I=1 1s binomial with parameters n = 1000 and p = 50. (The total number of tosses
15 1000 and since the coin is fair, the probability of heads on a single toss of the coin is
50 Hence

1000
1000
Pr[X =525 | [=1]= Z ( )u_Smlm".
X

x=525
Alternatively, we can evaluate the probability vsing a normal approximation with
continuity correction. When we do this, we obtain
Pr[X =525 | I=1]1=Pr[X =5245 | I=1]=

[ X — (1000) ( 50) 524.5 — (1000) (50)
Pr

I=1|=Pr[£ =15495].

v (1000) (50) (.50) ) v/ (1000) (50) (.50)

From Appendix E of the textbook and using linear interpolation as appropriate we have
B[1.5495] = (05) B[1.54] + (95 $[1.55] = (.05) (9382) +(.95)(9394) = 93034,

Hence
Pr[X =525 | I =1] = Pr[Z = 1.5495] ~ 1 — ®[1.5495] ~ 06066,

which 1s close to the value (0606071 caleulated directly.

Now consider the quantity Pr[X < 525 | I=0]. This is the probability of reaching a
false conclusion when the coin being tossed is known to be the biased one. Since the
probability of heads for the coin known to be biased 15 55% by assumption, the distribu-
tion of X | I =0 is binomial with parameters n = 1000 and p = 55. Hence

524

Pr(X <525 | 1=0]= ) (mfﬂ] (55)" (45)1000-%

x=0



Hence
Pr[X <525 | I=0]~ 0526817.

Alternatively, we can nse a normal approximation with continmity comrection:

Pr[X =525 | I=0]=Pr[X =5245 | [=0]=
X —(1000)(.55) 5245 —(1000) (53)

I=0|=Pr[Z=-16200]=

V (1000) ( 55) (45) ) v (1000) (55) (45)
P$[-1.62091 =1 — ¥[1.6209].

From Appendix E of the textbook and using linear interpolation as appropriate we have
B[1.6209] = (91) F[1.62] + (09N F[1.63] ~ (91) (9474) + (.09) ( 9484) = 94749,

Hence
Pr[X =525 | I=0] =1 - ®[1.6209] ~ 05251,

which 15 close to the value 0526817 calculated directly.

The only remaining probabilities to consider are Pr[J/ = 0] and Pr[f = 1]. Since the
gambler has one coin of each type and selects the comn to flip at random, we must have

1
and Pr[f=1]= -.
2
Putting this together, we find that the probability of reaching a false conclusion is

PrlX =525 | I=11Ptlf =1] + Pr[X <525 | I=0]Pi[I =0] =
1 1
(.ﬂﬁﬂﬁﬂ?l][g]+{.{]5268”}[;

Pr[f=0]=

[T ]

] = 0566444,



30. Let X be the insurer's payment in dollars for a randomly selected policy and let T be an
indicator of a claim for this policy. Then according to the assumptions,

3 { 1 with probability .25,
" 10 with probability .75,

and
(X|I=1)~Pareto (3, 100).

Hence
100
100 +x

3
Sz [x] :[ ] forx=0.

a. The desired probability 1s Pr[X = 50]. By the law of total probability we have
Pr[X =50] =Pt[X =50 | I = 1] Pe[f = 1] + Pr[X = 50 | I = 0] Pr[I =0].

Clearly Pr[X = 50 | I = 0] = 0 since no payment is made if no claim is submitted. From
the formula for 5y, stated earlier we also have



100 V¥ 2y
100 + 50 3

Consequently,

243 2
PI[X:}:'}O]:[—] ((25)+(0)(75) = —.
3

~
i

-]

b. The desired probability is Pr[X = 10]. (If the question had stated that a claim is
known to occur then the required probability would be Pr[X = 10 | I = 1]. However, i

question does not make this assumption ) Arguing as in part a we have
PriX =101 =Pe[X > 10 | I=1]1Pe[/ =1] + Pr[X = 10 | I =0] Pr[/ =0] =

100 104371
Sxz=1[10]-Pe[l = 1]+ 0-Pr[I = 0] :[—] L.Zi}:[—] [—]% 18782870
100 + 10 11) 14

c. Applying the law of total probability as in parts a and b we have for x =0,

Sylx] =PrX = x] =Pr[X =x |/ =11Pt[/ =11+ Pr[X = x| T=0] Pt[I = 0] =
100

Syyy—1 [¥]-PrlI = 1] + 0-Pr[f = 0] =[ ] (25).

00+ x

Since the payment on a given policy cannot be negative we must also have
Splx]=P[X=x]=1 forx=0.

Consequently, the survival function of X 1s given by

100
Sxlx] = ] (25) forx =0,
100 + x

Sxlx]=1 forx = 0.

It follows that the distribution function Fy 15 given by

3

Fylxl=1- (25) forx =0,
100 + x

Fx[x]=0 forx =0,

Note that



Pr[X=0]=
PrlX=0|I=11PtI =11 +Pr[X =0 |I=0]1Pt[I =0] =0-Pe[/ =11+ 1-Pr[I = 0] = .75.

This also follows from the formmla for Fx. Hence we see that X has a mixed distribution
with a probability mass of size .75 at x =0 (representing the event that no claim is
submutted) and a continnous distribution of probability on x = 0.

d. Recall that for nonnegative random variables X we have

E[X] :fﬂx[.r] dx.

Hence vsing the formula for §y derived in part ¢ we have
E[X]=
3

100 (100 + x)~= 100~
f (25)dx =(25)(100) ——— |57 =(25)(100)* —— =125
100 + x 2 2

To determine the variance of X we need to consider the density function fy. From part
c, 1t follows that the continuwouns part of the distribution has density function

3 x oy
felxl == S5x1=(25) — (1 + —J for x = 0.
100 100

The discrete part consists of a probability mass of size .75 at v =0. Hence

3 x oy
E[X*]| =0 -P[X =0] + f'fx[x]dx=ﬂ3-(_?5}+{.25]ff'-—[1+—] dx.
100 100
- 3 x4 B . -
The integral _Lm - o '1 + EJ dx can be determined by recursively applving

integration by parts. Alternatively, one could recognize this integral as the second
moment of a Pareto distibution with parameter s = 3, § = 100, and nse the formmla for

the second moment stated in section 6.1.3. Taking the latter approach we have

3 R 100°%-2
rf- [1+ ) dx= =100°.
o 100 100 (3-1)(3-2)

Consequently, the second moment of X is



o 3 X - 1 2
E[XZ]:{.ESJf. -—[1+—] d.r=[—]100'=2500-
100\ 100 4

It follows that
Var (X) = _E[:(f] — E[X]* =2500 — (12.5)* = 2343 75.

34 Let X be the number of claims received in the next day. From the information given in
the question, it is reasonable to model X in the following way: (X | A= A) ~ Poisson()
and A ~ Gamma(5, 1). From section 5.3, it follows that the nneonditional distribution
of X is negative binomial with parameters r=>5 and p = % One can also show thas
directly nsing the law of total probability and the techniques illustrated in the solutions
to exercises 29, 32, and 33. Hence the desired probability is

4

-1
Pr[X:x—cl]:l—Z[r:_rl ]p’{l—pf=
x=0
1]

S R R R R R

x=0

36. Let X be the size of a randomly selected claim. We are given that
(X | A=2)~Exponential(1) and A ~ Gamma(2, 100). Hence from section 6.1.3 (or
exercise 29), the vnconditional distribution of X is Pareto(2, 100); in particular,

100
] forx =0.

Sxlx] = [
100 + x

It follows that the desired probability is

2] 4

1y 1
Pr[X = IDEI]=5I[ID{I]=[—] =



47. Let X be the diameter of a randomly selected bolt and let ¥ be the diameter of the hole
in a randomly selected nut. We are given that

X ~Normal (2, 003)

and
Y ~Normal (2.02, 0.04).

From the given information, this bolt and nut will fit together iff ¥ <Y and ¥ - X = 0.05.
Hence the probability that a bolt and nut will fit together is Pr[0 < ¥ — X = 0.03].

Since X and ¥ are independent, it follows from section 6.3.1 that
Y — X ~ Normal(0.02, 0.05). (Note that yy_y =y — ux =202 -2 and

Ty_x=1Y (03)* +(04)° = 05) Hence the desired probability is

0-002 ¥Y-X-002 005-002
Pr[0 -c:Y—Xi'U.'US]:PII < = =

0.05 005 0.05
Pi[ 04 =Z2=06]=2[006] -¢[-04]=2[06] +2[04] -1

where £ ~ Normal((, 1) and € 15 the standard normal distribution function. From
Appendix E of the textbook, $[0.6] = 7257 and [0 4] =~ 6554. Consequently the

desired probability is
Prl0 <Y - X =005] =~ 7257 + 6554 — 1 = 3811.



