1. We show that the quotient topology on \(R/Q \) is the ‘indiscrete topology’ of 1.2.1. Indeed suppose that \(U \) was a nonempty open set in the quotient topology on \(R/Q \), and let \(p : R \to R/Q \) be the ‘quotient map’, i.e. the map taking \(x \in R \) to its equivalence class \([x] \in R/Q\). Let \([x] \in U\). Then \(p^{-1}(U) \) is an open set in \(R \) containing \(x \). Thus there is an open interval \((a,b)\) inside \(p^{-1}(U) \). Clearly for every \(x \in p^{-1}(U) \) and \(r \in Q \), we have \(x + r \in p^{-1}(U) \) (since \(p(x + r) = p(x) \)). Thus \(p^{-1}(U) \) contains \(\cup_{r \in Q} (a + r, b + r) \). Thus \(p^{-1}(U) = R \), so that \(U = p(p^{-1}(U)) = p(R) = R/Q \).

2. Text p. 144, 2(a): If \(p \circ f = I_Y \) then \(p \) is onto. Since \(p \) is continuous, if \(U \) is open then \(p^{-1}(U) \) is open. Conversely, if \(p^{-1}(U) \) is open then \(f^{-1}(p^{-1}(U)) \) is open. But \(f^{-1}(p^{-1}(U)) = (p \circ f)^{-1}(U) = U \). Thus \(p \) satisfies the definition of a quotient map.

Text p. 144, 2(b): Follows from 2(a), taking \(p = r \), and \(f \) the inclusion map from \(A \) into \(X \).

Text p. 144, 3: Certainly \(q \) is onto, and continuous (since it is the restriction of a continuous function). Let \(f : R \to A \) be the function \(f(x) = (x,0) \); clearly \(f \) is continuous, and \(p \circ f = I_R \). So by 2(a) above, \(q \) is a quotient map. Let \(U = \{(x,y) : y > 0\} \cap A \). This is open in \(A \), but \(q(U) = [0, \infty) \) which is not open in \(R \). Let \(C = \{(x,y) : y = \frac{1}{2}\} \). This is closed in \(A \), but \(q(C) \) is not closed.

3-5. Discussed in ‘workshop’—I have notes from the workshop if you want to xerox them. Be sure you know why, for example, the torus in \(R^3 \) is homeomorphic to \(S^1 \times S^1 \subset R^4 \).

6. Let \(R \) be the real line with its usual topology, and define an equivalence relation on \(R \) by \(x \sim y \) if and only if \(x = y \) or \(x \) and \(y \) are both integers. Show that the projection of \(R \) onto the quotient topological space \(R/\sim \) is closed, but that \(R/\sim \) is not locally compact, nor first or second countable.

Proof: Let us write \(Z \) for the integers, and \(\beta \) for the equivalence class in \(R/\sim \) consisting of the integers. Let \(R_0 = R \setminus Z \). We may identify \(R/\sim \) with the set \(R_0 \cup \{\beta\} \), and then the quotient map \(q : R \to R/\sim \) is the function taking \(Z \) to \(\beta \), and otherwise is the ‘identity map’ on \(R_0 \). We will write this function as \(p \). The quotient topology on \(R/\sim \) then corresponds to the following topology on \(R_0 \cup \{\beta\} \), namely the usual open sets in \(R_0 \), together with sets of the form \((U \setminus Z) \cup \{\beta\}\), for an open set \(U \) in \(R \) which contains \(Z \). This is easy to see (divide the open sets \(V \) in \(R_0 \cup \{\beta\} \) into two classes, the ones containing \(\beta \) and the ones not containing \(\beta \). An open set in \(R_0 \cup \{\beta\} \) not containing \(\beta \) is just an open set
in R which contains no integers. If V is an open set in $R_0 \cup \{\beta\}$ containing β, then $U = p^{-1}(V)$ is open set in R containing Z. Write $U = (U \setminus Z) \cup Z$, then $V = p(p^{-1}(V)) = p((U \setminus Z) \cup Z) = p(U \setminus Z) \cup \{\beta\} = (U \setminus Z) \cup \{\beta\}$.

It is now easy to argue that p is closed: let C be a closed subset of R. Case 1: $C \cap Z = \emptyset$. In this case, $p(C) = C$, and the complement of C in $R_0 \cup \{\beta\}$ is $\{\beta\} \cup (R_0 \setminus C) = \{\beta\} \cup ((R \setminus C) \setminus Z)$, which is open according to the last paragraph. Case 2: $C \cap Z \neq \emptyset$. In this case, $p(C) = (C \setminus Z) \cup \{\beta\}$, whose complement is easily seen to be $(R \setminus C) \setminus Z$, which is an open set in the usual sense in R_0. In either case, $p(C)$ is closed in $R_0 \cup \{\beta\}$.

To see that $R_0 \cup \{\beta\}$ is not locally compact, suppose that V was an open set in $R_0 \cup \{\beta\}$ containing β, and that K is a compact set in $R_0 \cup \{\beta\}$ containing V. By the facts above, $V = (U \setminus Z) \cup \{\beta\}$, for an open set U in R containing Z. For each integer n, we can pick $t_n \in (0,1)$ such that $(n - t_n, n + t_n) \subset U$. Let $U_1 = \cup_{n \in Z}(n - \frac{1}{n}, n + \frac{1}{n})$, and $U_0 = (U_1 \setminus Z) \cup \{\beta\}$ is open in $R_0 \cup \{\beta\}$. Also $(U_0) \cup \{n, n + 1 + n Z \setminus Z\} \cup \{(n, n + 1): n \in Z\}$ is an open cover of K. Since K is compact, there is a finite subcover, $(\{U_0\} \cup \{(n, n + 1): n \in Z, |n| \leq M\})$. But the latter does not cover V, and hence cannot cover K. This is a contradiction.

To see that $R_0 \cup \{\beta\}$ is not second countable, it is enough to show it is not first countable, since any second countable space is first countable (see 2.3.1). By way of contradiction, suppose that $\{B_1, B_2, \ldots\}$ was a countable set of open sets in $R_0 \cup \{\beta\}$ containing β such that for any open set V in $R_0 \cup \{\beta\}$ containing β, there exists an n with $\beta \in B_n \subset V$ (or equivalently, that $Z \subset p^{-1}(B_n) \subset p^{-1}(V)$). By intersecting each B_n with $p(n \setminus Z(n - \frac{1}{n}, n + \frac{1}{n}))$, we may assume without loss of generality that $p^{-1}(B_n)$ contains no subinterval of length $\geq \frac{1}{2}$. Fix $n \in Z$. As in the last paragraph, for any positive integer k, let t^n_k be the supremum of the numbers $t \in (0,1)$ such that $(n - t, n + t) \subset p^{-1}(B_k)$. In particular, $(n - 2t^n_k, n + 2t^n_k)$ is not contained in $p^{-1}(B_n)$ for any positive integer n. Let $U = \cup_{n \in Z}(n - 2t^n_k, n + 2t^n_k)$. Then $V = (U \setminus Z) \cup \{\beta\}$ is an open neighborhood of β in $R_0 \cup \{\beta\}$. However V is not contained in B_n since $p^{-1}(V) = U$ contains $(n - 2t^n_k, n + 2t^n_k)$, contradicting the hypothesis towards the start of this paragraph. Thus $R_0 \cup \{\beta\}$ is not first countable.

7. Let B^2 be the closed unit disk in R^2, with boundary the unit circle $S^1 = \{(x, y): x^2 + y^2 = 1\}$. Show that the unit sphere S^2 is homeomorphic to the attachment space $B^2 \cup_f X$, if either (a) X is a singleton set and $f : S^1 \rightarrow X$ is constant; or (b) $X = [-1, 1]$ and $f : S^1 \rightarrow X$ is the function $f(x, y) = x$.

Proof (Linsenmann): By the Proposition after the definition of $X \cup_f Y$ in the notes, it suffices to define a continuous surjective $g : B^2 \cup X \rightarrow S^2$ such that for every $w \in S^2$, $g^{-1}\{w\}$ is one of the equivalence classes in $B^2 \cup_f X$. In (a) it is easy to see that there exists such a function by drawing pictures. Namely, let g take X to the north pole $(0, 0, 1)$; and on B^2 let g be a function taking the center of the disk, the origin $(0, 0)$, to the south pole $(0, 0, -1)$, and the circle of radius r center the origin $(0, 0)$ to the circle which is the intersection of the plane $z = c$ with the sphere $x^2 + y^2 + z^2 = 1$. This should be done in such a way that c increases as r increases, and that $c = 1$ when $r = 1$. It is easy to
see that this can be done in such a way that \(g \) is continuous. (If you try a bit harder one may explicitly write down the function:

\[
g(x, y) = \left(\frac{x \sin(\pi \sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}, \frac{y \sin(\pi \sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}, -\cos(\pi \sqrt{x^2 + y^2}) \right),
\]

for \((x, y) \in B^2, (x, y) \neq (0, 0), \) and \(g(0, 0) = (0, 0, -1) \) and \(g = (0, 0, 1) \) on \(X. \))

(b) is similar to (a) so we omit most details. As in (a) one can see that there exists such a function by drawing pictures. Basically it is the function that behaves like a zipper, the one half of the zipper sewed to the top semicircle of \(B^2, \) the other half of the zipper sewed to the bottom semicircle, and then zipping it up. (Again, if you try a bit harder one may explicitly write such a function, as in (a), but I won’t take the trouble to do so).

8. Prove that a locally Euclidean space is locally compact, locally connected, and locally path connected.

Proof: Let \(X \) be locally Euclidean and let \(x \in X. \) Choose an open neighborhood \(U \) of \(x \) such that \(U \) is homeomorphic to an open set \(N \subset \mathbb{R}^m. \) Let \(g : N \to U \) be the homeomorphism, and choose \(p \in N \) such that \(g(p) = x. \) Since \(N \) is locally compact (why?), there exists an open \(V \) and compact \(K \) in \(\mathbb{R}^m \) with \(p \in V \subset K \subset N. \) Since \(g \) is a homeomorphism, \(g(V) \) is open, \(g(K) \) is compact, and \(x \in g(V) \subset g(K) \subset X. \) So \(X \) is locally compact.

To see that \(X \) is locally connected (resp. locally path connected) at \(x, \) note that for every \(T \in \tau \) with \(x \in T, \) \(T \cap U \) is an open subset of \(U, \) so \(g^{-1}(T \cap U) \) is open in \(N. \) There exists an open ball \(B \) with \(p = g^{-1}(x) \in B \subset g^{-1}(T \cap U) \subset N. \) The image of \(B \) under \(g \) is an open subset of \(T \) which is connected and path connected by 3.1.6. Therefore, \(X \) is locally (path) connected by definition.

9. Show that every compact \(m \)-manifold is the topological sum of a finite number of connected compact \(m \)-manifolds.

Proof: If \(X \) is a compact \(m \)-manifold then \(X \) is locally connected by the previous question. By 3.1.13 Prop 1, every component of \(X \) is clopen. Since \(X \) is compact, there must therefore be a finite number of components. Since each component of \(X \) is clopen, it is easy to see that \(X \) is homeomorphic to the topological sum of these components. Each component is clearly connected and compact, and is Hausdorff and second countable since these properties are hereditary. If \(x \) is a point in a component \(C \) of \(X, \) and if \(U \) is an open neighborhood of \(x \) in \(X \) homeomorphic via a function \(\varphi \) to an open set in \(\mathbb{R}^m, \) then \(U \cap C \) is an open neighborhood of \(x \) in \(C \) which is easily checked to be homeomorphic via \(\varphi|_C \) to an open set in \(\mathbb{R}^m. \) So \(C \) is an \(m \)-manifold. Thus \(X \) is the topological sum of a finite number of connected compact \(m \)-manifolds.

10. Text page 227

1. Prove that every manifold is regular and hence metrizable.
Proof: An m-manifold X is (by definition 3.2.5) second countable, Hausdorff, and m-locally Euclidean. By Question 5 above, X is locally compact, and hence is regular by 2.4.2. By 2.3.2, X is metrizable.

2. Let X be a compact Hausdorff space. Suppose that for each $x \in X$, there is a neighborhood U of x and a positive integer k such that U can be imbedded in R^k. Show that X can be imbedded in R^N for some positive integer N.

Proof: Since X is compact, we can cover X by a finite number of open sets $U_1, U_2, ..., U_n$ such that each U_i can be embedded in R^{k_i}. Then use the proof of 3.3.3.

3. Let X be a Hausdorff space such that each point of X has a neighborhood that is homeomorphic with an open subset of R^m. Show that if X is compact, then X is an m-manifold.

Proof: The space X is a compact Hausdorff space that is m-locally Euclidean by hypothesis. To be a manifold, X needs to be second countable. Also, note that X satisfies the hypothesis for question 2 above, so it can be imbedded in R^n for some integer n. This means that X is homeomorphic to a subset of R^n. By last semester’s homework 7 problem 5 we know that R^n is second countable and a subspace of a second countable space is also second countable. So, X is homeomorphic to a second countable space. Since second countability is a topological property, X is second countable. Hence, X is an m-manifold.