Text page 335

6. Let \(h : X \to Y \) be continuous, with \(h(x_0) = y_0 \) and \(h(x_1) = y_1 \). Let \(\alpha \) be a path in \(X \) from \(x_0 \) to \(x_1 \), and let \(\beta = h \circ \alpha \). Show that \(\beta \circ (h_{x_0})_* = (h_{x_1})_* \circ \tilde{\alpha} \).

Proof: By definition, for every \([f] \in \pi_1(X, x_0)\), \((h_{x_0})_*([f]) = [h \circ f] \). So, \((\beta \circ (h_{x_0})_*([f]) = \tilde{\beta}([h \circ f]) = \tilde{\beta} \circ \tilde{\alpha} \). Since \(\beta = h \circ \alpha \) is a path from \(y_0 \) to \(y_1 \), the reverse path \(\tilde{\beta} \) goes from \(y_1 \) to \(y_0 \) and is the composition \(h \circ \tilde{\alpha} \).

Thus, \((\beta \circ (h_{x_0})_*([f]) = [h \circ \tilde{\alpha}] \circ [h \circ f] \). Since \(\beta = h \circ \alpha \) is a path, \([h \circ \tilde{\alpha}] \) is the composition \(h \circ \tilde{\alpha} \).

Thus, \(\beta \circ (h_{x_0})_* = (h_{x_1})_* \circ \tilde{\alpha} \).

text page 341

2. Let \(p : E \to B \) be continuous and surjective. Suppose that \(U \) is an open set of \(B \) that is evenly covered by \(p \). Show that if \(U \) is connected, then the partition of \(p^{-1}(U) \) into slices is unique.

Proof: By 4.2.1, let \(\{V_j\}_{j \in J} \) be a partition of \(p^{-1}(U) \) into slices. Since for every \(j \in J \), \(V_j \) is homeomorphic to \(U_j \), each \(V_j \) is connected.

Looking at the subspace \(P = p^{-1}(U) \) of \(E \), I claim that the collection \(\{V_j\}_{j \in J} \) is also the collection of connected components of \(P \). Proof of claim: Let \(C \) be a component of \(P \). Since \(U \cap C \neq \emptyset \). By 3.1.11, \(V_k \subseteq C \). To see the other inclusion, suppose \(c \in C \) and \(c \notin V_k \). Then \(c \in \bigcup_{j \neq k} V_j \), which is an open set is disjoint from \(V_k \). So, \(C = V_k \cup \bigcup_{j \neq k} V_j \cap C \) and this is a separation of \(C \). Since \(C \) is connected, this contradiction means that there exists no such \(c \). Hence, \(C = V_k \). So every component is one of the \(V_j \)'s, and since the slices are disjoint and their union is \(P \), every slice is also a component. Thus the claim is proved. By construction of the components as equivalence classes, the components of \(P \) are unique, and thus the partition of \(P \) into slices is unique.

3. Let \(p : E \to B \) be a covering map; let \(B \) be connected. Show that if \(p^{-1}(\{b_0\}) \) has \(k \) elements for some \(b_0 \in B \), then \(p^{-1}(\{b\}) \) has \(k \) elements for every \(b \in B \).

Proof: First, from set theory, recall that for a given set \(X \), \(|X| \) is the notation for the cardinality of the set \(X \). So, the hypothesis says that \(|p^{-1}(\{b_0\})| = k \).

Define two subsets \(B_k \) and \(B_h \) of \(B \) by \(B_k = \{ b \in B : |p^{-1}(\{b\})| = k \} \) and \(B_h = \{ b \in B : |p^{-1}(\{b\})| \neq k \} \). Then \(B_k \) and \(B_h \) are disjoint and their union is \(B \). Let, for every \(b \in B \), \(U_b \) be an open neighborhood of \(b \) which is evenly covered by \(p \). By definition of \(U_b \) being evenly covered (4.2.1), the number of slices that \(p^{-1}(U_b) \) is partitioned into is equal to \(|p^{-1}(\{b\})| \). Then define a set \(S = \bigcup_{b \in B_k} U_b \) and \(T = \bigcup_{b \in B_h} U_b \). Note that \(S \) and \(T \) are open sets in \(B \) and that \(S \cup T = B \). Since \(B \) is connected, \(S \) and \(T \) cannot separate \(B \), so either (1) \(S \) or \(T \) is empty, or (2) \(S \cap T \neq \emptyset \). First consider possibility (2). If \(S \cap T \neq \emptyset \), then there exists a \(x \in B_k \) and a \(y \in B_h \) such that \(U = U_x \cap U_y \neq \emptyset \). Let \(z \in U \). Since \(U \) is a subset of \(U_z \), \(p^{-1}(U) \) has \(k \) slices so \(|p^{-1}(\{z\})| = k \).
However, U is also a subset of U_y, so by the same argument $|p^{-1}(\{y\})| \neq k$. This contradiction means possibility (2) cannot happen. So, (1) is true. Since $b_0 \in B_k$, $U_{b_0} \subset S \neq \emptyset$. So $T = \emptyset$. The only way that can be true is if $B_n = \emptyset$. Therefore $B = B_k$.

(a) If B is Hausdorff, regular, completely regular, or locally compact Hausdorff, then so is E.

Proof:

1. Hausdorff: Let $s, t \in E$ and assume $s \neq t$. Then $p(s), p(t) \in B$ and we can divide the proof into two cases.

Case 1. Suppose $p(s) \neq p(t)$. Then since B is Hausdorff, there exists open sets U and V such that $p(s) \in U$, $p(t) \in V$, and $U \cap V = \emptyset$. Since p is continuous, $p^{-1}(U)$ and $p^{-1}(V)$ are disjoint open sets in E and $s \in p^{-1}(U)$ and $t \in p^{-1}(V)$.

Case 2. Suppose $p(s) = p(t)$, and call this element $b \in B$. Since p is a covering map, by 4.2.1 choose an open set $b \in W \subset B$ that is evenly covered by p. Let $\{V_a\}_{a \in A}$ be a partition of $p^{-1}(W)$ into slices. There exists a $\beta \in A$ such that $s \in V_\beta$ and a $\gamma \in A$ such that $t \in V_\gamma$. Since p restricted to V_β or V_γ is injective, $\beta \neq \gamma$. Thus $s \in V_\beta$ and $t \in V_\gamma$ and they are disjoint open sets in E.

Therefore, E is Hausdorff.

2. Regular: Suppose B is regular, $x \in E$, and O is an open set in E containing x. To show E is regular it is sufficient to show that there exists an open set $W \subset E$ such that $x \in W \subset \overline{W} \subset O$.

Let $y = p(x)$ and let U be an evenly covered open neighborhood of y. Let $\{V_\alpha\}_{\alpha \in A}$ be the partition of $p^{-1}(U)$ into slices and let V_β be the slice that contains x. Then $V_\beta \cap O$ is an open subset of V_β which is homeomorphic to an open subset $U^* \subset U$. Since B is regular, for the given y and open U^* there exists an open W such that $y \in W \subset \overline{W} \subset U^*$. Then $P = p^{-1}(W) \cap V_\beta$ is open in E, and using the hint in the book to make this faster, $C = p^{-1}(\overline{W}) \cap V_\beta$ is closed in E. Thus, $x \in P \subset C \subset C \subset \overline{V_\beta} \cap O \subset O$. Hence, E is regular.

3. Completely Regular:

4. Locally Compact Hausdorff:

Suppose B is locally compact Hausdorff. First, by part one we know that E is Hausdorff. Let $x \in E$ and let $y = p(x)$. Since p is a covering map, let U be an evenly covered open neighborhood of y. Let $\{V_\alpha\}_{\alpha \in A}$ be the partition of $p^{-1}(U)$ into slices and let V_β be the slice that contains x. Since U is an open subset of B, it is also locally compact by 2.4.3. Since V_β is homeomorphic to U and local compactness is a topological property, V_β is locally compact in the subspace topology. There exists an (relatively) open S and a (relatively) compact K in V_β such that $x \in S \subset K$. Since V_β is open, by 1.2.?, S is open in E. Further, K is compact in the whole space E as well (using the convergent subnet definition of compactness and HW$ \#3$). Therefore, E is locally compact by definition 2.4.1.

(b) If B is compact and $p^{-1}(\{b\})$ is finite for each $b \in B$, then E is compact.

Proof: Let (x_A) be a net in E. Then $(p(x_A))$ is a net in B. Since B is compact, by 2.1.1, there exists a subnet $(p(x_{A_b}))$ of the net $(p(x_A))$ that converges to a point $b \in B$. Let $U \subset B$ be an open neighborhood of b that
is evenly covered by p. Note that by HW4 #3 we can consider the net in the subspace topology on U. For this convergent subnet, look at the corresponding net (x_{λ_n}) in E, or without loss of generality consider the net in the subspace $p^{-1}(U)$. By hypothesis, $p^{-1}([b])$ is finite, so $p^{-1}(U)$ can be partitioned into finitely many disjoint slices $V_1, V_2, ..., V_n$. There are finitely many disjoint slices, so there must be at least one slice, call it V_m, such that the net (x_{λ_n}) is frequently in V_m. Then let (e_β) be the subnet of (x_{λ_n}) that is a subset of V_m. Now, $(p(e_\beta))$ is a subnet of the convergent net $(p(x_{\lambda_n}))$, so it also converges. Since a subnet of a subnet is a subnet, (e_β) converges. Since a subnet of a subnet is a subnet, (e_β) is a subnet of (x_{λ_n}) that converges. Therefore, E is compact.

Text page 348

8. Let $p: E \to B$ be a covering map with E path connected. Show that if B is simply connected, then p is a homeomorphism.

Proof: Since B is simply connected, $\pi_1(B, b)$ is the trivial one element group. Since the lifting correspondence $\phi: \pi_1(B, b) \to p^{-1}([b])$ is surjective by 4.2.5, $p^{-1}([b])$ is a singleton. Since b was arbitrary, p is 1-1. By 4.2.2, p is open. Thus p is a homeomorphism.

Text page 359

2. Let $g: S^2 \to S^2$ be continuous. If for all $x \in S^2$, $g(x) \neq g(-x)$, then g is surjective.

Proof by Contrapositive: Suppose g is continuous and not surjective, and show that there exists a point $s \in S^2$ such that $g(s) = g(-s)$. Let $p \in S^2 - g(S^2)$. By 1.4.5, $g: S^2 \to S^2 - \{p\}$ is continuous. Since $S^2 - \{p\}$ is homeomorphic to R^2, let $h: S^2 - \{p\} \to R^2$ be the homeomorphism. Then, $h \circ g$ is a continuous map from S^2 to R^2. By 4.3.7 cor. 2, there exists a point $x \in S^2$ such that $(h \circ g)(x) = (h \circ g)(-x)$. Since h is a homeomorphism, h is injective and this means $g(x) = g(-x)$.

Text page 370

3.(a) Show that R^1 and R^n are not homeomorphic if $n > 1$.

Proof: This may be seen since R^1 with one point removed is disconnected, yet R^n with one point removed is connected.

(b) Show that R^2 and R^n are not homeomorphic if $n > 2$.

Proof: Let $n > 2$. Suppose there exists a homeomorphism $h : R^2 \to R^n$. Then h restricted to the open set $R^2 \setminus \{0\}$ is also a homeomorphism between $R^2 \setminus \{0\}$ and $R^n \setminus \{h(0)\}$. This means that their respective fundamental groups are isomorphic. However, by 4.4.2, $\pi_1(R^2 \setminus \{0\}) \approx Z$ and $\pi_1(R^n \setminus \{h(0)\}) \approx 0$. This creates a contradiction, so R^2 and R^n are not homeomorphic.