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This course and these notes assume familiarity with some basic
facts about C∗-algebras, and material from a graduate functional
analysis course. They are a considerable expansion of most of Chap-
ter 1 of my book [4] with Christian Le Merdy. The presentation here
is thus greatly shaped by that book (indeed some is copied verba-
tim), and of course thanks go to Christian for permitting me to do
this.

Each of the four chapters roughly corresponds to one lecture.
Since these notes were aimed at the students in the class, I have
not yet taken the trouble to compile an adequate bibliography, or
to make sure that results are always attributed, etc. I thank Alex
Bearden for finding many typos which have been corrected in the
current draft.



Chapter 1

Lectures 1-2 (Operator
spaces)

1.1 Introduction

Banach spaces or normed linear spaces are ‘just’ the linear subspaces
of commutative C∗-algebras, while operator spaces are the linear
subspaces of general C∗-algebras.

The importance of operator space theory may perhaps be best
stated as follows: it is a generalization of Banach spaces which is par-
ticularly appropriate for studying ‘noncommutative’ or ‘quantized’
spaces, and ‘linear’ problems arising in noncommutative situations.
They are particularly appropriate for studying spaces or algebras of
operators on Hilbert space. Thus the field of operator spaces provides
a bridge from the world of Banach and function spaces, to the world
of spaces of operators on a Hilbert space, and of ‘noncommutative
mathematics’.

Crudely put, when generalizing classical arguments in functional
analysis, one should often expect C∗-algebra theory to replace topol-
ogy, von Neumann algebra to replace arguments using measure and
integrals, and operator space theory to replace Banach space tech-
niques.

After pioneering work by Arveson, Haagerup, and Wittstock, op-
erator spaces were developed by Effros and Ruan, who were soon
joined by B and Paulsen, Pisier, Junge, and many others.
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1.2 Basic facts, examples, and constructions

1.2.1 (Matrix notation) Fix m,n ∈ N. If X is a vector space, then
so is Mm,n(X), the set of m × n matrices with entries in X. This
may also be thought of as the algebraic tensor product Mm,n ⊗ X,
where Mm,n = Mm,n(C). We write In for the identity matrix of
Mn = Mn,n. We write Mn(X) = Mn,n(X), Cn(X) = Mn,1(X) and
Rn(X) = M1,n(X).

If x is a matrix, then xij or xi,j denotes the i-j entry of x, and we
write x as [xij ] or [xi,j ]i,j . We write (Eij)ij for the usual (matrix unit)
basis of Mm,n (we allow m,n infinite here too). We write A 7→ At

for the transpose on Mm,n, or more generally on Mm,n(X). We will
sometimes meet large matrices with row and column indexing that
is sometimes cumbersome. For example, a matrix [a(i,k,p),(j,l,q)] is
indexed on rows by (i, k, p) and on columns by (j, l, q), and may also
be written as [a(i,k,p),(j,l,q)](i,k,p),(j,l,q) if additional clarity is needed.
To illustrate this notation, the reader may want to write down the
matrix [δi,`δkj ](i,k),(j,`). Here δi,j is Kronecker’s delta.

1.2.2 (Norms of matrices with operator entries) Clearly Mn(B(H))
is a C∗-algebra for any Hilbert space H, with the norm that it gets
via the ∗-isomorphism Mn(B(H)) ∼= B(H(n)). Reviewing, recall that
H(n) is the Hilbert space direct sum of m copies of H, and the norm
of a vector ζ = (ζk) there is (

∑n
k=1 ‖ζk‖2)

1
2 . This ∗-isomorphism

is the map taking a matrix [Tij ] ∈ Mn(B(H)) to the operator from
H(n) to H(n) :

T11 T12 · · · T1n

T21 T22 · · · T2n

· · · · · ·
· · · · · ·
Tn1 Tn2 · · · Tnn



ζ1

ζ2

·
·
ζn

 =


∑

k T1kζk∑
k T2kζk
·
·∑

k Tnkζk

 .
ThusMn(B(H)) is a C∗-algebra, and [Tij ] ∈Mn(B(H)) has a natural
norm:

‖[Tij ]‖n = sup{‖[Tij ]
→
ζ ‖ :

→
ζ ∈ H(n), ‖

→
ζ ‖ ≤ 1}.

Using the principle that ‖ξ‖ = sup{|〈ξ, η〉| : η ∈ Ball(K)} in any
Hilbert space K, we deduce that

‖[Tij ]‖n = sup{|
∑
i,j

< Tijζj , ηi > | :
→
ζ = (ζi),

→
η = (ηi) ∈ Ball(H(n))}.
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We can also view Mn(B(H)) as the spatial tensor product Mn⊗B(H)
(we will review the spatial tensor product later).

Similar identities hold for rectangular matrices. Indeed if m,n ∈
N, andK,H are Hilbert spaces, then we always assignMm,n(B(K,H))
the norm (written ‖ · ‖m,n) ensuring that

Mm,n(B(K,H)) ∼= B(K(n), H(m)) isometrically (1.1)

via the natural algebraic isomorphism.

1.2.3 (Completely bounded maps) Suppose that X and Y are
vector spaces and that u : X → Y is a linear map. For a positive
integer n, we write un for the associated map [xij ] 7→ [u(xij)] from
Mn(X) to Mn(Y ). This is often called the (nth) amplification of u,
and may also be thought of as the map IMn⊗u on Mn⊗X. Similarly
one may define um,n : Mm,n(X) → Mm,n(Y ). If each matrix space
Mn(X) and Mn(Y ) has a given norm ‖ · ‖n, and if un is an isometry
for all n ∈ N, then we say that u is completely isometric, or is a
complete isometry. Similarly, u is completely contractive (resp. is a
complete quotient map) if each un is a contraction (resp. takes the
open ball of Mn(X) onto the open ball of Mn(Y )). A map u is
completely bounded if

‖u‖cb
def
= sup

{
‖[u(xij)]‖n : ‖[xij ]‖n ≤ 1, all n ∈ N

}
<∞.

As in the Banach space case, it is easy to prove that ‖u+ v‖cb ≤
‖u‖cb +‖v‖cb, and ‖λu‖cb = |λ|‖u‖cb for a scalar λ, and so on. Com-
positions of completely bounded maps are completely bounded, and
one has the expected relation ‖u◦v‖cb ≤ ‖u‖cb‖v‖cb. If u : X → Y is
a completely bounded linear bijection, and if its inverse is completely
bounded too, then we say that u is a complete isomorphism. In this
case, we say that X and Y are completely isomorphic and we write
X ≈ Y . If, further, u and u−1 are completely contractive, then just
as in the Banach space case they are complete isometries.

1.2.4 (Operator spaces) A concrete operator space is a (usually
closed) linear subspace X of B(K,H), for Hilbert spaces H,K (in-
deed the case H = K usually suffices, via the canonical inclusion
B(K,H) ⊂ B(H ⊕K)). However we will want to keep track too of
the norm ‖ · ‖m,n that Mm,n(X) inherits from Mm,n(B(K,H)), for
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all m,n ∈ N. We write ‖ · ‖n for ‖ · ‖n,n; indeed when there is no
danger of confusion, we simply write ‖[xij ]‖ for ‖[xij ]‖n.

An abstract operator space is a pair (X, {‖ · ‖n}n≥1), consisting
of a vector space X, and a norm on Mn(X) for all n ∈ N, such that
there exists a linear complete isometry u : X → B(K,H). In this
case we call the sequence {‖ · ‖n}n an operator space structure on
the vector space X. An operator space structure on a normed space
(X, ‖ · ‖) will usually mean a sequence of matrix norms as above, but
with ‖ · ‖ = ‖ · ‖1.

Clearly subspaces of operator spaces are again operator spaces.
We often identify two operator spaces X and Y if they are completely
isometrically isomorphic. In this case we often write ‘X ∼= Y com-
pletely isometrically’, or say ‘X ∼= Y as operator spaces’. Sometimes
we simply write X = Y .

1.2.5 (C∗-algebras) If A is a C∗-algebra, a closed ∗-subalgebra of
B(H), then Mn(A) may be viewed as a a closed ∗-subalgebra of
Mn(B(H)) ∼= B(H(n)). Thus Mn(A) is a C∗-algebra. A basic fact
about C∗-algebras is that a one-to-one ∗-homomorphism between
C∗-algebras is isometric. Thus there can be at most one norm on a ∗-
algebra for which that ∗-algebra is a C∗-algebra. Thus the ∗-algebra
Mn(A) has a unique norm with respect to which it is a C∗-algebra.
With respect to these matrix norms, A is an operator space. Indeed
A is a concrete operator space in B(H). We call this the canonical
operator space structure on a C∗-algebra. If the C∗-algebra A is com-
mutative, with A = C0(Ω) for a locally compact space Ω, and then
these matrix norms are determined via the canonical isomorphism
Mn(C0(Ω)) = C0(Ω;Mn). Explicitly, if [fij ] ∈Mn(C0(Ω)), then:

‖[fij ]‖n = sup
t∈Ω

∥∥[fij(t)]
∥∥. (1.2)

To see this, note that by the above one only needs to verify that (1.2)
does indeed define a C∗-norm on Mn(C0(Ω)). Clearly the right hand
side of (1.2) is a finite number, since ‖[fij(t)]‖ ≤ n2 maxi,j |fij(t)|,
and each of the functions fij is bounded on Ω. Also, it is easy to
check that (1.2) does define a norm. To see that (1.2) is a Banach
algebra, note that

‖[fi,j ][gi,j ]‖ = sup{‖[fi,j(t)][gi,j(t)]‖ : t ∈ Ω}
≤ sup{‖[fi,j(t)]‖ : t ∈ Ω} sup{‖[gi,j(t)]‖ : t ∈ Ω}
= ‖[fi,j ]‖‖[gi,j ]‖.
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So Mn(C0(Ω)) is a Banach algebra. We check the C∗-identity:

‖[fj,i][fi,j ]‖n = sup{‖[fj,i(t)][fi,j(t)]‖ : t ∈ Ω}
= sup{‖[fi,j(t)]∗[fi,j(t)]‖ : t ∈ Ω}
= sup{‖[fi,j(t)]‖2 : t ∈ Ω}
= sup{‖[fi,j(t)]‖Mn}2.

Thus Mn(C0(Ω)) is a C∗-algebra.

Proposition 1.2.6. For a homomorphism π : A→ B between C∗-algebras,
the following are equivalent: (i) π is contractive, (ii) π is completely
contractive, and (iii) π is a ∗-homomorphism. If these hold, then
π(A) is closed, and π is a complete quotient map onto π(A); more-
over π is one-to-one if and only if it is completely isometric.

Proof. (ii) ⇒ (i) Obvious.

(iii)⇒ (ii) Note that πn is a ∗-homomorphism, and so contractive
by C∗-algebra theory. So π is completely contractive.

Clearly if π is completely isometric it is one-to-one. Conversely,
if π is one-to-one then πn is a one-to-one ∗-homomorphism and so
isometric by C∗-algebra theory. Thus π is completely isometric.

By C∗-algebra theory., any ∗-homomorphism π is a 1-quotient
map (that is it maps the unit ball onto the unit ball) onto its (closed)
range. Similarly, πn is a 1-quotient map, so that π is a complete
quotient map.

(i)⇒ (iii) This is a well fact about C∗-algebras that we shall not
prove here.

1.2.7 (Maps into a commutative C∗-algebra) If [aij ] ∈Mn then

‖[aij ]‖ = sup
{ ∣∣∣∑

ij

aijzjwi

∣∣∣ : z = [zj ], w = [wi] ∈ Ball(`2n)
}
.

Moreover, if aij ∈ B(H), for a Hilbert space H, then

‖[aij ]‖ ≥ sup
{
‖
∑
ij

aijzjwi‖ : z = [zj ], w = [wi] ∈ Ball(`2n)
}
.

Indeed, if one uses the fact that ‖T‖ = sup {|〈Tζ, η〉| : ζ, η ∈
Ball(H)}, for any T ∈ B(H), then one sees that the right side of
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the last centered formula is

sup{

∣∣∣∣∣∣∣∣∣
〈

[ai,j ]


z1ζ
z2ζ

...
znζ

 ,

w1η
w2η

...
wnη


〉∣∣∣∣∣∣∣∣∣ : ζ, η ∈ Ball(H),−→z ,−→w ∈ Ball(l2n)},

which is dominated by ‖[ai,j ]‖.
Using these formulae, it is easy to see that any continuous linear

functional ϕ : X → C on an operator space X is completely bounded,
with ‖ϕ‖ = ‖ϕ‖cb. We have

‖[ϕ(xi,j)]‖n = sup


∣∣∣∣∣∣
∑
i,j

ϕ(xi,j)zjwi

∣∣∣∣∣∣ : −→z ,−→w ∈ Ball(l2n)


= sup


∣∣∣∣∣∣ϕ
∑

i,j

xi,jzjwi

∣∣∣∣∣∣ : −→z ,−→w ∈ Ball(l2n)


≤ ‖ϕ‖ sup


∥∥∥∥∥∥
∑
i,j

xi,jzjwi

∥∥∥∥∥∥ : −→z ,−→w ∈ Ball(l2n)


≤ ‖ϕ‖ ‖[xi,j ]‖.

Hence ‖ϕn‖ ≤ ‖ϕ‖, and so ‖ϕ‖cb = ‖ϕ‖.
Next we claim that ‖u‖ = ‖u‖cb for any bounded linear map

u from an operator space into a commutative C∗-algebra. We can
assume that the commutative C∗-algebra is C0(Ω), for a locally com-
pact Ω. For fixed w ∈ Ω let φw ∈ X∗ be defined by φw(x) = u(x)(w).
Note that |φw(x)| = |u(x)(w)| ≤ ‖u(x)‖ ≤ ‖u‖‖x‖, if x ∈ E. Thus
‖φw‖ ≤ ‖u‖. We then have

‖[u(xi,j)(w)]‖ = ‖[φw(xi,j)]‖ ≤ ‖φw‖‖[xi,j ]‖ ≤ ‖u‖‖[xi,j ]‖

Thus by equation (1.2), it follows that ‖[u(xi,j)]‖ ≤ ‖u‖‖[xi,j ]‖, and
so ‖u‖n ≤ ‖u‖. Since this is true for all n ∈ N we have ‖u‖cb = ‖u‖.

1.2.8 (Properties of matrix norms) If K,H are Hilbert spaces, and
if X is a subspace of B(K,H), then there are certain well-known
properties satisfied by the matrix norms ‖ · ‖m,n described in 1.2.2.
Most important for us are the following two.



1.2. BASIC FACTS, EXAMPLES, AND CONSTRUCTIONS 11

(R1) ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖, for all n ∈ N and all α, β ∈ Mn, and
x ∈Mn(X) (where multiplication of an element of Mn(X) by
an element of Mn is defined in the obvious way).

(R2) For all x ∈Mm(X) and y ∈Mn(X), we have∣∣∣∣∣∣∣∣[ x 0
0 y

]∣∣∣∣∣∣∣∣
m+n

= max{‖x‖m, ‖y‖n}.

We often write x⊕ y for the matrix in (R2).
To see (R1), define

α̃ =

 α11IH α12IH . . . α1nIH
...

αn1IH αn2IH . . . αnnIH

 = α⊗IH ∈Mn⊗B(H) = Mn(B(H)).

Similarly define β̃ = β ⊗ IH ∈ Mn(B(H)). Note that ‖α̃‖ = ‖α‖
since the ∗-homomorphism Mn −→Mn(B(H)) taking α 7→ α̃ is one-
to-one and hence is a (complete) isometry. Also αxβ = α̃xβ̃ for all
x ∈Mn(B(H)). Thus

‖αxβ‖ = ‖α̃xβ̃‖ ≤ ‖α̃‖‖x‖‖β̃‖ = ‖α‖‖x‖‖β‖

since Mn(B(H)) is a Banach algebra. This proves (R1).
To prove (R2), note that if a = [In : 0], b = [In : 0]t, then

x = a(x⊕ y)b (using the notation after the statement of (R2)). If we
let ã = [In ⊗ IH : 0] ∈ Mn,n+m(B(H)) (that is, ã is an n × (n + m)
matrix consisting of all zero entries except for an IH in the i-i entry
for i = 1, · · · , n), and if b̃ = ãt, then as in the proof of (R1), x =
ã(x⊕ y)b̃. Hence

‖x‖n = ‖ã(x⊕ y)b̃‖n ≤ ‖ã‖‖x⊕ y‖m+n‖b̃‖.

Note that ‖ã‖ = ‖ãã∗‖
1
2 = ‖I‖

1
2

Mn(B(H)) = 1, and similarly ‖b̃‖ =

‖b̃∗b̃‖
1
2 = 1. Thus ‖x‖n ≤ ‖x⊕y‖m+n. Similarly, ‖y‖n ≤ ‖x⊕y‖m+n,

so that max{‖x‖n, ‖y‖m} ≤ ‖x⊕ y‖m+n.
For the other direction, let ξ ∈ Hn, η ∈ Hm, then

‖(x⊕y)

[
ξ
η

]
‖2 = ‖

[
xξ
yη

]
‖2 = ‖xξ‖2+‖yη‖2 ≤ ‖x‖2‖ξ‖2+‖y‖2‖η‖2.

Clearly this is dominated by max{‖x‖, ‖y‖}2(‖ξ‖2 + ‖η‖2). Thus we
deduce that ‖x⊕ y‖ ≤ max{‖x‖, ‖y|}. This proves (R2).
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• It follows from (R1) that switching rows (or columns) of a matrix of
operators does not change its norm. Such switching is equivalent to
multiplying by a ‘permutation’ matrix U , namely a matrix which
is all zeroes except for one 1 in each row and each column. Such a
matrix has norm 1, being unitary, and so

‖Ux‖ ≤ ‖x‖ ≤ ‖U∗Ux‖ ≤ ‖Ux‖.

• Adding (or dropping) rows of zeros or columns of zeros does not
change the norm of a matrix of operators. To see this, note that by
the last paragraph we can suppose all the zero rows (resp. columns)
are at the bottom (resp. right) of the matrix. But then it is el-
ementary to see that the norm is unchanged if we remove those
zero rows or columns. For example∣∣∣∣∣∣∣∣[ x0

]∣∣∣∣∣∣∣∣
m,n

= sup{‖xζ‖ : ζ ∈ Ball(H(n))} = ‖x‖.

• By the principle in the last paragraph, we really only need to
specify the norms for square matrices, that is, the case m = n
above, since Mm,n(X) may be viewed as a subspace of Mk(X)
where k = max{m,n}.
• If X is an operator space then the canonical algebraic isomor-

phisms
Mn(Mm(X)) ∼= Mm(Mn(X)) ∼= Mmn(X) (1.3)

are isometric. To see this, we can assume that X is a C∗-algebra,
and then notice that these three canonical algebraic isomorphisms
are ∗-isomorphisms, hence completely isometric.

• If X is an operator space then so is Mn(X), the latter with the op-
erator space structure for which the canonical isomorphismMm(Mn(X)) ∼=
Mmn(X) becomes an isometry. One way to see this1 is to note that
if X is a subspace of a C∗-algebra A, then Mn(X) ⊂Mn(A), and
the latter is a C∗-algebra and hence is an operator space whose ma-
trix norms are the ones making Mm(Mn(A)) a C∗-algebra. Then
Mn(X), with the inherited matrix norms, is an operator space.
However, Mm(Mn(A)) is ∗-isomorphic to Mmn(A), and hence the
norm making Mm(Mn(A)) a C∗-algebra is exactly the one com-
ing from the C∗-algebra Mmn(A) via the canonical ∗-isomorphism
Mm(Mn(A)) ∼= Mmn(A). Restricting the latter isomorphism to
Mm(Mn(X)) gives the desired assertion.

1Another way to see this is as in 1.2.23 (7).
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• If T ∈ B(K,H), and if zij ∈ C then ‖[zijT ]‖ = ‖T‖‖[zij ]‖. We
leave this as an exercise.

• It is easy to see from the above that maxi,j ‖xij‖ ≤ ‖[xij ]‖n ≤
nmaxi,j ‖xij‖. It follows from this that a sequence (xk) of matrices
in Mn(X) converges iff the i-j entry of xk converges as k →∞ to
the same entry of x, for all i, j.

1.2.9 (An operator that is not completely bounded) The canonical
example of a map that is not completely bounded is the ‘transpose’
map π(x) = xt on K = K(`2) thought of as infinite matrices (via

the prescription x → [〈x→ej ,
→
ei〉]). Note that π is an isometric linear

∗-antiisomorphism. Indeed if
→
z = (zi),

→
w = (wi) ∈ Ball(`2), then∣∣∣ ∞∑

i,j=1

xjiziwj

∣∣∣ =
∣∣∣ ∞∑
i,j=1

xijwizj

∣∣∣ ≤ ‖[xij ]‖.
This says that π is a contraction, and by symmetry (since π−1 = π) it
is an isometry. If {Eij} is the usual basis for Mn and if ρ : Mn → K
is the ‘top left corner embedding’, i.e. ρ(x) = x ⊕ 0, then π is a
one-to-one ∗-homomorphism, and hence is a complete isometry. If
xn = [ρ(Eji)] ∈Mn(K) then

‖xn‖n = ‖[ρ(Eji)]‖ = ‖[Eji]‖ = 1,

as can be seen by switching rows and columns of the matrix [Eji] to
make it an ‘identity matrix’. On the other hand, πn(xn) = [ρ(Eij)],
which has the same norm as [Eij ]. Erasing zero rows and columns,
the latter becomes an n × n matrix with all entries 1. By the C∗-
identity the latter has the same norm as x∗x = n, where x is a column
of n entries each equal to 1. Thus we have ‖πn(xn)‖n = n, and so
‖πn‖ ≥ n. Hence π is not completely bounded.

Conditions (R1) and (R2) in 1.2.8 are often called Ruan’s ax-
ioms. Ruan’s theorem asserts that (R1) and (R2) characterize oper-
ator space structures on a vector space. This result is fundamental
to our subject in many ways. At the most pedestrian level, it is used
frequently to check that certain abstract constructions with operator
spaces remain operator spaces. At a more sophisticated level, it is
the foundational and unifying principle of operator space theory. We
now proceed to Effros and Ruan’s proof of Ruan’s theorem. We omit
the proof of the first lemma, which is an application of the geometric
Hahn-Banach theorem, and which may be found on [p. 30,ERbook].
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Lemma 1.2.10. If X is a vector space, and if ‖ · ‖n is a norm
on Mn(X), for each n ∈ N, satisfying (R1) and (R2), and if F ∈
Ball(Mn(X)∗), then there are states ϕ,ψ on Mn with

|F (αxβ)| ≤ ϕ(αα∗)
1
2 ‖x‖ ψ(β∗β)

1
2 , α, β ∈Mn, x ∈Mn(X).

Lemma 1.2.11. If (X, {‖ · ‖n}) are as in the last lemma, if F ∈
Ball(Mn(X)∗), and if H is the Hilbert space `2n, then there exist
vectors ζ, η ∈ Ball(H(n)), and a completely contractive u : X →
B(H) ∼= Mn such that F = 〈un(·)ζ, η〉.

Proof. By the last lemma there are states ϕ,ψ onMn with |F (α∗xβ)| ≤
ϕ(α∗α)

1
2 ‖x‖ψ(β∗β)

1
2 for α, β ∈ Mn. States on Mn are well under-

stood. Indeed we can write

ϕ(x) =
n∑
k=1

〈xζk, ζk〉 = 〈(x⊗ In)ζ, ζ〉, x ∈Mn,

where ζ = (ζk) ∈ Ball(H(n)), where H = `2n. It follows that for any
α ∈Mn we have

ϕ(α∗α) = 〈(α∗α⊗ In)ζ, ζ〉 = 〈(α⊗ In)ζ, (α⊗ In)ζ〉 = ‖(α⊗ In)ζ‖2.

Similarly, ψ(β∗β)
1
2 = ‖(β ⊗ In)η‖ for some η ∈ Ball(H(n)). The

inequality in the first line of the proof then reads

|F (α∗xβ)| ≤ ‖x‖ ‖(α⊗ In)ζ‖ ‖(β ⊗ In)η‖, α, β ∈Mn.

Let E = (Mn ⊗ In)η and K = (Mn ⊗ In)ζ, subspaces of Cn2
. Fix

x ∈ Mn(X) for a moment and define g : E × K → C by g((β ⊗
In)η, (α⊗ In)ζ) = F (α∗xβ), for α, β ∈Mn. Thus

|g((β⊗In)η, (α⊗In)ζ)| ≤ ‖x‖ ‖(α⊗In)ζ‖ ‖(β⊗In)η‖, α, β ∈Mn.

It is easy to see from this that g is a well-defined and bounded
sesquilinear form on E × K. By Hilbert space theory there ex-
ists an operator in B(E,K), which we shall write as T (x), with
‖T (x)‖ ≤ ‖x‖, and

〈T (x)(β ⊗ In)η, (α⊗ In)ζ〉 = F (α∗xβ), x ∈Mn(X), α, β ∈Mn.

It is easy to see that T is linear. Let P be the projection from Cn2

onto E. Since E is invariant under Mn⊗ In, it follows from basic op-
erator theory that P ∈ (Mn⊗ In)′. Let R = T (·)P ∈ B(Cn2

) ∼= Mn2 .
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Then R ∈ B(Mn(X),Mn2) is a linear contraction, since ‖R(x)‖ ≤
‖T (x)‖‖P‖ ≤ ‖x‖. We have

〈R(x)η, ζ〉 = 〈T (x)(In⊗In)η, (In⊗In)ζ〉 = F (InxIn) = F (x), x ∈Mn(X).

Notice next that if α, β, γ ∈Mn then

〈T (xγ)(β⊗In)η, (α⊗In)ζ〉 = F (α∗xγβ) = 〈T (x)(γβ⊗In)η, (α⊗In)ζ〉.

That is,

〈T (xγ)h, k〉 = 〈T (x)(γ ⊗ In)h, k〉, h ∈ E, k ∈ K,

which means that T (xγ) = T (x)(γ ⊗ In). Hence

R(xγ) = T (xγ)P = T (x)(γ ⊗ In)P = R(x)(γ ⊗ In), γ ∈Mn.

A similar argument shows that R(γx) = (γ ⊗ In)R(x) for γ ∈ Mn.
It is a simple linear algebra exercise that if S : Mn(Y ) → Mn(Z) is
a linear map, where Y, Z are vector spaces, then S = un for a linear
u : Y → Z iff S(αxβ) = αS(x)β for all x ∈ Mn(Y ) and α, β ∈ Mn.
Hence R = un for some u : X → Mn with ‖un‖ = ‖R‖ ≤ 1. By
Exercise 5 at the end of this section, this forces ‖um‖ ≤ 1 for all
m ≥ n, so that u is completely contractive.

Thus 〈un(x)η, ζ〉 = 〈R(x)η, ζ〉 = F (x) for all x ∈Mn(X).

Corollary 1.2.12. If (X, {‖ · ‖n}) are as in the last lemma, and if
x ∈ Mn(X), then there exists a completely contractive u : X → Mn

such that ‖un(x)‖ = ‖x‖n.

Proof. By the Hahn–Banach theorem there exists F ∈ Ball(Mn(X)∗)
with |F (x)| = ‖x‖n. By the last lemma, there exist vectors ζ, η ∈
Ball(Cn2

), and a completely contractive u : X → Mn such that
F (x) = 〈un(x)ζ, η〉. Thus

‖x‖n = |F (x)| ≤ ‖un(x)‖‖ζ‖‖η‖ ≤ ‖un(x)‖.

However clearly ‖un(x)‖ ≤ ‖x‖n.

Theorem 1.2.13. (Ruan) Suppose that X is a vector space, and
that for each n ∈ N we are given a norm ‖ · ‖n on Mn(X) satisfying
conditions (R1) and (R2) above. Then X is linearly completely iso-
metrically isomorphic to a linear subspace of B(H), for some Hilbert
space H.
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Proof. Suppose that (X, {‖ · ‖n}) satisfies (R1) and (R2). Let I be
the collection of all completely contractive ϕ : X → Mn, for all
n ∈ N. We write nϕ = n if ϕ : X → Mn. Let M = ⊕∞ϕ∈I Mnϕ .
This is a von Neumann algebra, and therefore certainly an operator
space. Define u : X → M by u(x) = (ϕ(x))ϕ∈I . This is a complete
contraction, as is very easy to check, and so un is a contraction for
each n ∈ N. Choose x ∈ Mn(X), and by Corollary 1.2.12 choose
completely contractive ϕ : X → Mn such that ‖ϕn(x)‖ = ‖x‖n. If
x = [xij ] then since the projection P : M →Mnϕ onto the ‘ϕ-entry’
is a ∗-homomorphism, and hence completely contractive, we have

‖un(x)‖ = ‖[u(xij)]‖ ≥ ‖[P (u(xij))]‖ = ‖[ϕ(xij)]‖ = ‖ϕn(x)‖ = ‖x‖n.

Thus un is an isometry, and hence u is a complete isometry.

1.2.14 We next discuss some consequences and applications of Ruan’s
theorem. It follows immediately from this result that the ‘abstract
operator spaces’ are precisely the vector spaces X with matrix norms
satisfying (R1) and (R2). More precisely, a sequence of norms {‖·‖n},
with ‖ · ‖n a norm on Mn(X), is an operator space structure (oss) on
X in the sense of 1.2.4, iff they satisfy (R1) and (R2). The one di-
rection of this follows immediately from Theorem 1.2.13. The other
follows immediately from the fact noted earlier that every concrete,
and hence every abstract, operator space satisfies (R1) and (R2).

1.2.15 (Quotient operator spaces) If Y ⊂ X is a closed linear
subspace of an operator space, then Ruan’s theorem allows one to
check that X/Y is an operator space with matrix norm on Mn(X/Y )
coming from the identification Mn(X/Y ) ∼= Mn(X)/Mn(Y ), the lat-
ter space equipped with its quotient Banach space norm. Explic-
itly, these matrix norms are given by the formula ‖[xij+̇Y ]‖n =
inf{‖[xij + yij ]‖n : yij ∈ Y }. Here xij ∈ X. Note that with this
definition, the canonical quotient map q : X → X/Y is a complete
quotient map.

To check the (R1) condition, note that more generally if α ∈
Mn,m, β ∈ Mm,n, x = [xij ] ∈ Mm(X), then qn(αxβ) = αqn(x)β (an
exercise in linear algebra), and so

‖αqn(x)β‖ = ‖qn(αxβ)‖ ≤ ‖αxβ‖n ≤ ‖α‖‖x‖m‖β‖.

Given ε > 0 we may choose x above so that ‖x‖ < ‖qn(x)‖+ ε, and
then

‖αqn(x)β‖ ≤ ‖α‖‖x‖m‖β‖ < ‖α‖(‖qn(x)‖m + ε)‖β‖.
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Letting ε→ 0 gives ‖αqn(x)β‖ ≤ ‖α‖‖qn(x)‖m‖β‖ as desired.
To prove (R2) let x be as in the last paragraph, and choose y ∈

Mk(X) with ‖y‖k < ‖qk(y)‖+ ε. Then qn+k(x⊕ y) = qn(x)⊕ qk(y),
and so

‖qn(x)⊕qk(y)‖n+k = ‖qn+k(x⊕y)‖n+k ≤ ‖x⊕y‖n+k = max{‖x‖, ‖y‖}

which is dominated by max{‖qn(x)‖, ‖qk(y)‖}+ε. Letting ε→ 0 gives
‖qn(x) ⊕ qk(y)‖n+k ≤ max{‖qn(x)‖, ‖qk(y)‖}, which is ‘one half’ of
the (R2) condition. The other half follows from our slightly more
general version of (R1) in the last paragraph since, for example, if
α = [In O] then

‖qn(x)‖n = ‖α(qn(x)⊕ qk(y))α∗‖ ≤ ‖qn(x)⊕ qk(y)‖.

1.2.16 (Factor theorem) If u : X → Z is completely bounded, and
if Y is a closed subspace of X contained in Ker(u), then the canonical
map ũ : X/Y → Z induced by u is also completely bounded, with
‖ũ‖cb = ‖u‖cb. If Y = Ker(u), then u is a complete quotient map
if and only if ũ is a completely isometric isomorphism. Indeed this
follows exactly as in the usual Banach space case (exercise).

1.2.17 (The∞-direct sum) Let {Xλ : λ ∈ I} be a family of operator
spaces, and we write ⊕λXλ (or ⊕∞λ Xλ if more clarity is needed), for
their ∞-direct sum as Banach spaces. If I = {1, . . . , n} then we
usually write this sum as X1 ⊕∞ · · · ⊕∞ Xn. Thus a tuple (xλ) is in
⊕∞λ Xλ if and only if xλ ∈ Xλ for all λ, and supλ ‖xλ‖ < ∞. Let
us write Pλ for the projection of ⊕∞λ Xλ onto Xλ. We assign ⊕∞λ Xλ

an operator space structure by defining ‖x‖n = supλ ‖xλ‖Mn(Xλ) if
x ∈ Mn(⊕λXλ) and xλ = (Pλ)n(x). Another way to say this, is
that we are assigning Mn(⊕λXλ) the norm making the canonical
linear algebraic isomorphism Mn(⊕λXλ) ∼= ⊕λMn(Xλ) an isometry.
It is easy to check by Ruan’s theorem that this is an operator space
structure on ⊕∞λ Xλ. Or one can see this directly as follows. If Xλ ⊂
Aλ, where Aλ is a C∗-algebra, then ⊕∞λ Xλ is isometrically embedded
in the C∗-algebra direct sum ⊕∞λ Aλ. The canonical operator space
structure on the C∗-algebra ⊕∞λ Aλ is given by the formula ‖x‖n =
supλ ‖xλ‖Mn(Aλ), where xλ = (Pλ)n(x). This may be seen, as in the
end of 1.2.5, by proving that the latter formula is a C∗-algebra norm
on Mn(⊕∞λ Aλ), which in turn follows easily for example from the
∗-isomorphism Mn(⊕∞λ Aλ) ∼= ⊕∞λ Mn(Aλ). Then ⊕∞λ Xλ inherits
this operator space structure from ⊕∞λ Aλ.
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Another way to say the above, is that if Xλ ⊂ Aλ ⊂ B(Hλ) then
⊕λXλ may be regarded as the subspace of B(⊕2

λHλ) consisting of
the operators which take (ζλ) ∈ ⊕2

λHλ to (xλζλ). It is a simple
exercise to see that the norm of the latter operator is supλ ‖xλ‖,
with a similar formula for matrix norms.

By definition, the canonical inclusion and projection maps be-
tween ⊕λXλ and its ‘λth summand’ are complete isometries and
complete quotient maps respectively. As we said above, if Xλ are
C∗-algebras then this direct sum is the usual C∗-algebra direct sum.
If the Xλ are W ∗-algebras then this direct sum is just the W ∗-algebra
direct sum.

The ∞-direct sum has the following universal property. If Z is
an operator space and uλ : Z → Xλ are completely contractive linear
maps, then there is a canonical complete contraction Z → ⊕λXλ

taking z ∈ Z to the tuple (uλ(z)). We leave this as an easy exercise.

If Xλ = X for all λ ∈ I, then we usually write `∞I (X) for ⊕λXλ.

One may define a ‘c0-direct sum’ of operator spaces to simply be
the closure in ⊕∞λ Xλ of the set of tuples which are zero except in
finitely many entries.

1.2.18 (Mapping spaces) If X,Y are operator spaces, then the space
CB(X,Y ) of completely bounded linear maps from X to Y , is also
an operator space, with matrix norms determined via the canonical
isomorphism between Mn(CB(X,Y )) and CB(X,Mn(Y )). That is,
if [uij ] ∈Mn(CB(X,Y )), then define

‖[uij ]‖n = sup
{
‖[uij(xkl)]‖nm : [xkl] ∈ Ball(Mm(X)), m ∈ N

}
.

(1.4)
Here the matrix [uij(xkl)] is indexed on rows by i and k and on
columns by j and l. Then

Mn(CB(X,Y )) ∼= CB(X,Mn(Y )) isometrically. (1.5)

One may see that (1.4) defines an operator space structure on CB(X,Y )
by appealing to Ruan’s theorem 1.2.13. Alternatively, one may
see it as follows. Consider the set I = ∪n Ball(Mn(X)), and for
x ∈ Ball(Mm(X)) ⊂ I set nx = m. Consider the operator space
direct sum (see 1.2.17) ⊕∞x∈IMnx(Y ), which is an operator space.
Then the map from CB(X,Y ) to ⊕∞x∈IMnx(Y ) taking u to the tu-
ple (unx(x))x ∈ ⊕∞x Mnx(Y ) is (almost tautologically) a complete
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isometry. For example, note that

‖(unx(x))x∈I‖ = sup{‖unx(x)‖ : x ∈ I} = sup{‖un‖ : n ∈ N} = ‖u‖cb.

Thus CB(X,Y ) is an operator space.

1.2.19 (The dual of an operator space) The special case when Y =
C in 1.2.18 is particularly important. In this case, for any operator
space X, we obtain by 1.2.18 an operator space structure on X∗ =
CB(X,C). The latter space equals B(X,C) isometrically by 1.2.7.
We call X∗, viewed as an operator space in this way, the operator
space dual of X. This duality will be studied further in later sections.
By (1.5) we have

Mn(X∗) ∼= CB(X,Mn) isometrically. (1.6)

(Note that the map implementing this isomorphism is also exactly
the canonical map θ from Mn⊗X∗ to B(X,Mn), where θ(a⊗ϕ)(x) =
ϕ(x)a, for a ∈Mn, ϕ ∈ X∗, x ∈ X.)

1.2.20 (Minimal operator spaces) Let E be a Banach space, and
consider the canonical isometric inclusion of E in the commutative
C∗-algebra C(Ball(E∗)). Here E∗ is equipped with the w∗-topology.
This inclusion induces, via 1.2.5, an operator space structure on E,
which is denoted by Min(E). We call Min(E) a minimal operator
space. By (1.2), the resulting matrix norms on E are given by

‖[xij ]‖n = sup
{
‖[ϕ(xij)]‖ : ϕ ∈ Ball(E∗)

}
(1.7)

for [xij ] ∈ Mn(E). Thus every Banach space may be canonically
considered to be an operator space. Since Min(E) ⊂ C(Ball(E∗)),
we see from 1.2.7 that for any bounded linear u from an operator
space Y into E, we have

‖u : Y −→ Min(E)‖cb = ‖u : Y −→ E‖. (1.8)

From this last fact one easily sees that Min(E) is the smallest op-
erator space structure on E. For if {||| · |||n} was an operator space
structure on E, with ||| · |||1 = ‖ ·‖, write X for the abstract operator
space which is E with these matrix norms. Then IE : Min(E)→ X
is a linear isometry, and so by (1.8) we have ‖I−1

E ‖cb = ‖I−1
E ‖ = 1.

But this says precisely that ||| · |||n dominates the norm in (1.7).
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Also, if Ω is any compact space and if i : E → C(Ω) is an isom-
etry, then the matrix norms inherited by E from the operator space
structure of C(Ω), coincide again with those in (1.7). That is, the
norms in (1.7) equal ‖[i(xij)]‖n. This may be seen by applying 1.2.7
to i and i−1 (the latter defined on the range of i). By 1.2.7 we have
i completely contractive. But since Min(E) ⊂ C(Ball(E∗))) we have
by 1.2.7 again that i−1 is completely contractive. So i is a complete
isometry, which is the desired identity.

This means that ‘minimal operator spaces’ are exactly the op-
erator spaces completely isometrically isomorphic to a subspace of
a C(K)-space. Note too that the category of Banach spaces and
bounded linear maps is ‘the same’ as the category of minimal oper-
ator spaces and completely bounded linear maps.

1.2.21 (Maximal operator spaces) If E is a Banach space then
Max(E) is the largest operator space structure we can put on E.
We define the matrix norms on Max(E) by the following formula

‖[xij ]‖n = sup
{
‖[u(xij)]‖ : u ∈ Ball(B(E, Y )), all operator spaces Y

}
.

(1.9)
This may be seen to be an operator space structure on E by us-
ing Ruan’s theorem. However again a direct sum argument is more
elementary: Define a map i : x 7→ (u(x))u from E into the oper-
ator space Z = ⊕∞u Yu, where the latter sum is indexed by every
u : E → Y as in (1.9), and writing such Y as Yu. We may assume
that the cardinality of Y is dominated by that of E so that there are
no set theoretic issues. Since there exists at least one such u which is
an isometry (see e.g. 1.2.20), it is evident that i is an isometry. Thus
‖ · ‖1 is the usual norm on E. Then the matrix norms inherited by
E from the operator space structure of Z, gives E an operator space
structure. However the latter coincides again with the one in (1.9).
That is, the norms in (1.9) equal ‖[i(xij)]‖n.

It is clear from this formula that Max(E) has the property that
for any operator space Y , and for any bounded linear u : E → Y , we
have

‖u : Max(E) −→ Y ‖cb = ‖u : E −→ Y ‖. (1.10)

Indeed to prove this we may assume that u is a contraction, and then
from (1.9) we see that ‖[u(xij)]‖ is dominated by the norm in (1.9).
That is, un is a contraction, so that u is completely contractive, as a
map from E with the matrix norms from (1.9). This proves (1.10).
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It is also clear that Max(E) is the largest operator space structure
we can put on E. For if {|||·|||n} was another operator space structure
on E, with ||| · |||1 = ‖ · ‖, write X for the abstract operator space
which is E with these matrix norms. Then IE : Max(E) → X is a
linear isometry, and so by (1.10) we have ‖IE‖cb = ‖IE‖ = 1. But
this says precisely that ||| · |||n is dominated by the norm in (1.9).

1.2.22 (Hilbert column and row spaces) If H is a Hilbert space
then there are two canonical operator space structures on H most
commonly considered. The first is the Hilbert column space Hc. In-
formally one should think of Hc as a ‘column in B(H)’. Thus if
H = `2n then Hc = Mn,1, thought of as the matrices in Mn which are
‘zero except on the first column’. We write this operator space also
as Cn, and the ‘row’ version as Rn. Note that for such a matrix x
the norm ‖x‖ = ‖x∗x‖

1
2 is precisely the `2n norm of the entries in x.

So Cn ∼= `2n isometrically. However Cn is not completely isometric
to Rn, and they fail to even be completely isomorphic if n is infinite
(see the discussion after Proposition 1.2.25).

For a general Hilbert space H there are several simple ways of
describing Hc more precisely. For example, one may identify Hc with
the concrete operator space B(C, H). If ζ ∈ H write Tζ : C → H
for the operator taking 1 to ζ. It is easy to see that T ∗ζ Tη is the
operator on C taking 1 to 〈η, ζ〉. Thus if [ζij ] ∈ Mn(H) then by the
C∗-identity

‖[Tζij ]‖ = ‖[
n∑
k=1

T ∗ζkiTζkj ]‖
1
2 = ‖[

n∑
k=1

〈ζkj , ζki〉]‖
1
2 .

Another equivalent description of Hilbert column space is as fol-
lows: If η is a fixed unit vector in H, then the set H ⊗ η of rank
one operators ζ ⊗ η is a closed subspace of B(H) which is isometric
to H via the map ζ 7→ ζ ⊗ η. (By convention, ζ ⊗ η maps ξ ∈ H
to 〈ξ, η〉ζ.) Thus we may transfer the operator space structure on
H ⊗ η inherited from B(H) over to H. The resulting operator space
structure is independent of η and coincides with Hc. To see this, we
will use the C∗-identity in Mn(B(H)) applied to ‖[ζij ⊗ η]‖. Note
that

[ζij ⊗ η]∗[ζij ⊗ η] = [η ⊗ ζji][ζij ⊗ η] = [
n∑
k=1

(η ⊗ ζki)(ζkj ⊗ η)].
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However, (η ⊗ ζki)(ζkj ⊗ η) = 〈ζkj , ζki〉R, where R = η ⊗ η. It
was left as an exercise in 1.2.8 that ‖[zijR]‖ = ‖R‖‖[zij ]‖ for scalars
zij , and so we conclude using the C∗-identity that ‖[ζij ⊗ η]‖ =

‖[
∑n

k=1〈ζkj , ζki〉]‖
1
2 . That is,

‖[ζij ]‖Mn(Hc) =
∥∥∥[ n∑

k=1

〈ζkj , ζki〉
]∥∥∥ 1

2
, [ζij ] ∈Mn(H). (1.11)

This shows that this is the same operator space structure on H as the
previous one. If H = `2n and we take η = (1, 0, · · · , 0) then {ζ ⊗ η}
is precisely the matrices in Mn which are ‘zero except on the first
column’.

If T ∈ B(H,K) then ‖T‖ = ‖T‖cb, where the latter is the
norm taken in CB(Hc,Kc). Indeed let [ζij ] ∈ Mn(Hc), and let α ∈
B(`2n, `

2
n(H)) correspond to this matrix via the identity Mn(Hc) =

Mn(B(C, H)) = B(`2n, `
2
n(H)). Similarly, let β ∈ B(`2n, `

2
n(K)) cor-

responding to [Tζij ]. Then β = (I`2n ⊗ T ) ◦ α, and hence ‖β‖ ≤
‖I`2n ⊗ T‖‖α‖ ≤ ‖T‖‖α‖. This shows that ‖Tn‖ ≤ ‖T‖, and so
‖T‖cb ≤ ‖T‖.

More generally, we have

B(H,K) = CB(Hc,Kc) completely isometrically (1.12)

We will give a quick proof of this identity at the end of this section.
A subspace K of a Hilbert column space Hc is again a Hilbert

column space, as may be seen by considering (1.11). Similarly the
quotient Hc/Kc is a Hilbert column space completely isometric to
(H 	K)c. This may be seen by considering the canonical projection
P from Hc onto (H	K)c. Note P is applying completely contractive
by the fact at the start of the second last paragraph, and is there-
fore clearly a complete quotient map. Now apply 1.2.16 to see that
Hc/Ker(P ) = Hc/Kc ∼= (H 	K)c completely isometrically.

We define Hilbert row space similarly. Recalling that H∗ ∼= H̄ is
a Hilbert space too, we identify Hr with the concrete operator space
B(H̄,C). Analogues of the above results for Hc hold, except that
there is a slight twist in the corresponding version of (1.12). Namely,
although B(H,K) = CB(Hr,Kr) isometrically, this is not true com-
pletely isometrically. Instead, as we shall see, there is a canoni-
cal completely isometric isomorphism B(H,K) ∼= CB(K̄r, H̄r). We
write C and R for `2 with its column and row operator space struc-
tures respectively.
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We have

(Hc)∗ ∼= H̄r and (Hr)∗ ∼= H̄c (1.13)

completely isometrically using the operator space dual structure in
1.2.19. The first relation is obtained by setting K = C in (1.12). The
second relation follows e.g. from the first if we replace H there by
K = H̄, and take the operator space dual, using the fact that Hilbert
spaces are reflexive, and also the first result in the next Section 1.3,
which states that X ⊂ X∗∗ completely isometrically. Thus Kc ∼=
(Kc)∗∗ ∼= (Hr)∗ completely isometrically.

Just as in one of the exercises for Chapter 1, the map T 7→ T ∗ is
a complete isometry from CB(X,Y ) into CB(Y ∗, X∗) and this map
is onto if X is reflexive. Thus if H,K are Hilbert spaces then we
have

B(H,K) ∼= CB(Hc,Kc) ∼= CB((Kc)∗, (Hc)∗) ∼= CB(K̄r, H̄r),

using (1.13).

1.2.23 (Matrix spaces) If X is an operator space, and I, J are
sets, then we write MI,J(X) for the set of I×J matrices whose finite
submatrices have uniformly bounded norm. We explain: By an ‘I×J
matrix’ we mean a matrix x = [xi,j ]i∈I,j∈J , where xi,j ∈ X. For such
a matrix x, and for a subset ∆ = C × D ⊂ I × J , we write x∆ for
the ‘submatrix’ [xi,j ]i∈C,j∈D. Sometimes we also write x∆ for the
same matrix viewed as an element of MI,J(X), and with all other
entries zero. We say the submatrix is finite if ∆ is finite. We define
‖x‖ to be the supremum of the norms of its finite submatrices, and
MI,J(X) consists of those matrices x with ‖x‖ <∞. Similarly there
is an obvious way to define a norm on Mn(MI,J(X)) by equating this
space with MI,J(Mn(X)), and one has Mn(MI,J(X)) ∼= Mn.I,n.J(X),
for n ∈ N.

We write MI(X) = MI,I(X), CwI (X) = MI,1(X), and RwI (X) =
M1,I(X). If I = ℵ0 we simply denote these spaces by M(X), Cw(X)
and Rw(X) respectively. Also, Mfin

I,J(X) will denote the vector sub-
space of MI,J(X) consisting of ‘finitely supported matrices’, that is,
those matrices with only a finite number of nonzero entries. We
write KI,J(X) for the norm closure in MI,J(X) of Mfin

I,J(X). We set
KI(X) = KI,I(X), CI(X) = KI,1(X), and RI(X) = K1,I(X). Again
we merely write K(X), R(X) and C(X) for these spaces if I = ℵ0.
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If X = C then we write CI(C) = CI . Similarly, RI = RI(C). We
write KI,J for KI,J(C), and MI,J for MI,J(C).

We leave the following assertions about matrix spaces as exer-
cises, for the most part. Throughout, I, J, I0, J0 are sets and X,Y
are operator spaces.

(1) If X ⊂ Y (completely isometrically), then MI,J(X) ⊂MI,J(Y )
completely isometrically. Thus ifX ⊂ B(H,K) then MI,J(X) ⊂
MI,J(B(H,K)). This is important, since this reduces most facts
about MI,J(X) to facts about MI,J(B(H,K)), which we shall
see in (5) is a simple space to deal with.

(2) If u : X → Y is completely bounded, then so is the obvious
amplification uI,J : MI,J(X)→MI,J(Y ), and ‖uI,J‖cb = ‖u‖cb.
Clearly uI,J also restricts to a completely bounded map from
KI,J(X) to KI,J(Y ). If u is a complete isometry, then so is
uI,J (see (1)). Thus the MI,J(·) and KI,J(·) constructions are
‘injective’ in some sense.

(3) MI,J
∼= B(`2J , `

2
I) completely isometrically. Via this identifica-

tion, KI,J = S∞(`2J , `
2
I) completely isometrically. Thus for any

Hilbert spaces K,H we have that B(K,H) ∼= MI0,J0 completely
isometrically, for some sets I0, J0.

(4) We have MI,J(MI0,J0) ∼= MI×I0,J×J0
∼= MI0,J0(MI,J) completely

isometrically.

(5) Putting (3) and (4) together, it follows easily that for any sets
I, J , we have MI,J(B(K,H)) ∼= B(K(J), H(I)) completely iso-
metrically.

(6) Fix i ∈ I, j ∈ J . The map which takes x ∈ X to the matrix
in MI,J(X) which is all zero except for an x in the i-j-entry,
is a complete isometry. The map MI,J(X) → X which takes
a matrix to its i-j-entry, is a complete contraction. The map
which takes x ∈ X to the matrix in MI(X) which is all zero
except for an x in all the entries on the ‘main diagonal’, is a
complete isometry.

(7) If X is an operator space then so is MI,J(X). Indeed if X ⊂
B(H), then by (1) and (5) we have MI,J(X) ⊂ MI,J(B(H)) ∼=
B(H(J), H(I)) completely isometrically. IfX is complete then so
is MI,J(X). To see this, we can suppose that X is a closed sub-
space ofB(H). Then MI,J(X) ⊂MI,J(B(H)) ∼= B(H(J), H(I)),
and the latter space is complete. Suppose that an ∈ MI,J(X),
with an → a ∈ MI,J(B(H)). Then by (6) the i-j-entry of an
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converges to the i-j-entry of a, and so the latter is in X. Hence
a ∈MI,J(X). So MI,J(X) is norm closed in MI,J(B(K,H)).

(8) We have MI,J(X) = CwI (RwJ (X)) = RwJ (CwI (X)) completely
isometrically. One way to see this is to first check this identity
in the case X = B(H) using (5) repeatedly, and then use this
fact to do the general case.

(9) By a similar argument, MI,J(MI0,J0(X)) ∼= MI×I0,J×J0(X) for
any operator space X, generalizing (4).

(10) CwI (C) = CI = (`2I)
c (see 1.2.22 for this notation). Indeed, by

(5) we have CwI (C) = B(C, `2I) = (`2I)
c, and this must equal

CI since ‘finitely supported tuples’ are dense in `2I . Similarly,
RI = RwI (C) = (`2I)

r.

(11) KI,J(X) is the set of x ∈ MI,J(X) such that the net (x∆)
converges to x, where the net is indexed by the finite subsets
∆ = C ×D of I × J , ordered by inclusion.

(12) For any operator spacesX,Y we have CB(X,MI,J(Y )) ∼= MI,J(CB(X,Y ))
isometrically. We leave it as an exercise to write down the ob-
vious isomorphism here, and to check that this is a (complete)
isometry.

1.2.24 (Infinite sums) Suppose thatX,Y are subspaces of a C∗-algebra
A ⊂ B(H). Let I be an infinite set. If x ∈ RwI (X) and y ∈ CI(Y ),
then the ‘product’ xy =

∑
i xiyi, if x and y have ith entries xi and yi

respectively, actually converges in norm to an element of A, and we
have ‖xy‖ ≤ ‖x‖‖y‖. This is clear if I is finite, in this case we can
view x ∈ Rn(B(H)) = B(H(n), H) and similarly y ∈ B(H,H(n)),
and then clearly ‖xy‖ ≤ ‖x‖‖y‖. To see the general case, we use
the following notation. If z is an element of RwI (X) or CI(Y ), and
if ∆ ⊂ I, write z∆ for z but with all entries outside ∆ ‘switched to
zero’. Since y ∈ CI(Y ), by 1.2.23 (11) given ε > 0 there is a finite
set ∆ ⊂ I, such that ‖y − y∆‖ = ‖y∆c‖ < ε. If ∆′ is a finite subset
of I not intersecting ∆ then∥∥∥∑

i∈∆′

xiyi

∥∥∥ = ‖x∆′y∆′‖ ≤ ‖x∆′‖‖y∆′‖ ≤ ‖x‖‖y∆′‖ < ‖x‖ε.

Hence the sum converges in norm as claimed. For any finite ∆ ⊂ I,
a computation identical to the first part of the second last centered
equation shows that ‖

∑
i∈∆ xiyi‖ ≤ ‖x‖‖y‖. Taking the limit over

∆, we have ‖xy‖ ≤ ‖x‖‖y‖.
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Proposition 1.2.25. For any operator space X and set I, we have
that CB(CI , X) ∼= RwI (X) and CB(RI , X) ∼= CwI (X) completely
isometrically.

Proof. We sketch the proof of just the first relation. Define L : RwI (X)→
CB(CI , X) by L(x)(z) =

∑
i xizi, for x ∈ RwI (X), z ∈ CI . This

map is well defined, by the argument for 1.2.24 for example. It
is also easy to check, by looking at the partial sums of this series
as in 1.2.24, that L is contractive. Alternatively, this can be seen
by viewing X ⊂ B(H), and L(x)(z) as the product (composition)
TS of the operator Sz : H → H(I) : ζ 7→ [ziζ], and the operator
Tx : H(I) → H : [ηi]→

∑
i xiηi. It is easy to argue that

‖[L(x)(zij)]‖ = ‖[TxSzij ]‖ ≤ ‖Tx‖‖[Szij ]‖ = ‖x‖‖[zij ]‖,

so that L is a contraction.

Conversely, for u in CB(CI , X), let x be a 1 by I matrix whose ith
entry is u(ei), where (ei) is the canonical basis. If ∆ = {i1, i2, · · · , im} ⊂
I then

‖x∆‖ = ‖[u(ei1) u(ei2) · · · u(eim)]‖ ≤ ‖u‖cb‖[ei1 ei2 · · · eim ]‖ = ‖u‖cb,

since the last matrix after erasing rows and columns of zeros is an
identity matrix. Thus x ∈ RwI (X) and ‖x‖RwI (X) ≤ ‖u‖cb. It is easy
to see that L(x)(z) =

∑
i u(ei)zi = u(

∑
i eizi) = u(z) if z ∈ CI . Thus

L(x) = u, and so L is a surjective isometry. This together with (1.5)
yields

Mm(CB(CI , X)) ∼= CB(CI ,Mm(X)) ∼= RwI (Mm(X)) ∼= Mm(RwI (X))

isometrically. From this one sees that L is a complete isometry.

We will use the last lemma to verify two facts that were men-
tioned earlier. First, that CI is not completely isomorphic to RI
if I is infinite. One way to see this is to note that CB(CI , RI) ∼=
RwI (RI) ∼= RI×I by Proposition 1.2.25, and (10) and (4) of 1.2.23.
This is saying that for an operator T : CI → RI , the ‘cb-norm’ equals
its Hilbert-Schmidt norm (that is, its norm in the Hilbert-Schmidt
class S2(`2I). Similarly if S : RI → CI . So if CI ∼= RI completely
isomorphically, then there is an invertible operator between them
which is in S2(`2I). Since S2(`2I) is known from operator theory to be
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an ideal, this implies that the identity map (= TT−1) is in S2(`2I),
which is absurd if I is infinite.

Second, we show that B(H,K) ∼= CB(Hc,Kc) completely iso-
metrically. Indeed,

CB(CI , CJ) ∼= RwI (CJ) = RwI (CwJ ) ∼= MJ,I
∼= B(`2I , `

2
J),

using Proposition 1.2.25, and 1.2.23 (10), (8), and (3).

Historical note: The results in Section 2.1 are almost all due
to Arveson, Effros, and Ruan [1, 17]. Hamana studied matrix spaces
(see 1.2.23) in some of his papers (see e.g. [20]), and they are studied
in more detail by Effros, and Ruan in [13, 14]. Maximal operator
spaces were first considered by Blecher and Paulsen [8]. Preliminary
forms of some of the results in 1.2.22 were noted in the latter paper;
and the fact that B(H,K) ∼= CB(Hc,Kc) isometrically is due to
Wittstock [32]. In the generality listed here, the main source for the
results towards the end of 1.2.22 is [16], although Blecher indepen-
dently discovered a couple of these [3].

Exercises.

(1) If T ∈ B(K,H), and if [zij ] ∈Mn show that ‖[zijT ]‖ = ‖T‖‖[zij ]‖.
Deduce that C has a unique operator space structure (up to com-
plete isometry).

(2) If X ⊂ B(H,K), and if S : K → K ′ and T : H ′ → H are
operators between Hilbert spaces, prove that the map x 7→ SxT
is completely bounded with ‘cb-norm’ dominated by ‖S‖‖T‖.

(3) If K is a closed subspace of a Hilbert space H, prove that the
map x 7→ PKx|K is completely contractive from B(H) to B(K).

(4) Prove that if S : Mn(Y )→Mn(Z) is a linear map, where Y,Z are
vector spaces, then S = un for a linear u : Y → Z iff S(αxβ) =
αS(x)β for all x ∈Mn(Y ) and α, β ∈Mn.

(5) (R. R. Smith) If u : X → Mn satisfies ‖un‖ ≤ 1, use linear
algebra to show that ‖um‖ ≤ 1 for all m ≥ n, so that u is
completely contractive. [Hint: if m ≥ n and ζ, η ∈ Cmn, then we

can write ζ =
∑n

k=1 ζk⊗
→
ek, where ζk ∈ Cm. Since Span{ζk : k =

1, · · · , n} has dimension ≤ n, there is an isometry β ∈Mm,n and

vectors ζ̃k ∈ Cn with βζ̃k = ζk. Similarly, there is an isometry
α ∈ Mm,n with αη̃k = ηk. Use this to find an upper bound for
the number |〈um(x)ζ, η〉|.]
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(6) Prove that (R1) and (R2) together are equivalent to requiring
that: (R1)′ ‖αxβ‖n ≤ ‖α‖‖x‖m‖β‖, for all n,m ∈ N and all
α ∈Mn,m, β ∈Mm,n, and x ∈Mm(X), and (R2)′ ‖x⊕y‖n+m ≤
max{‖x‖n, ‖y‖m} for x ∈ Mn(X), y ∈ Mm(X). Prove also that
(R1)′ and (R2)′ actually imply that ‖ · ‖n is a norm.

(7) Suppose that ui : X → B(Ki, Hi) are completely contractive,
and that K = ⊕iKi and H = ⊕iHi (Hilbert space sum). Define
u : X → B(K,H) by u(x) = (ui(x)), where the latter denotes the
operator (ζi) 7→ (ui(x)ζi) on K. Show that ‖ui‖cb ≤ ‖u‖cb ≤ 1.

(8) Prove that if in Ruan’s theorem X is also separable, then one
may take the Hilbert space there to be `2.

(9) If X,Y are (possibly incomplete) operator spaces, and if θ : X →
Y is a linear isomorphism such that the map ϕ 7→ ϕ ◦ θ is a well
defined complete isometry from Y ∗ onto X∗, then θ is completely
isometric.

(10) Prove the facts stated in 1.2.23.

1.3 Duality of operator spaces

An operator space Y is said to be a dual operator space if Y is
completely isometrically isomorphic to the operator space dual (see
1.2.19) X∗ of an operator space X. We also say that X is an oper-
ator space predual of Y , and sometimes we write X as Y∗. If X,Y
are dual operator spaces then we write w∗CB(X,Y ) for the space of
w∗-continuous completely bounded maps from X to Y .

Unless otherwise indicated, in what follows the symbol X∗ de-
notes the dual space together with its dual operator space structure
as defined in 1.2.19. Of course X∗∗ is considered as the dual operator
space of X∗.

Proposition 1.3.1. If X is an operator space then X ⊂ X∗∗ com-
pletely isometrically via the canonical map iX .

Proof. We can suppose that X is a subspace of B(H), for a Hilbert
space H. Fix n ∈ N and [xij ] ∈ Mn(X). We first show that
‖[iX(xij)]‖n ≤ ‖[xij ]‖n. By definition, the norm ‖[iX(xij)]‖n in
Mn((X∗)∗) equals

sup
{
‖[iX(xij)(fkl)]‖nm : [fkl] ∈ Ball(Mm(X∗)), m ∈ N

}
= sup

{
‖[fkl(xij)]‖nm : [fkl] ∈ Ball(Mm(X∗)), m ∈ N

}
≤ ‖[xij ]‖n,



1.3. DUALITY OF OPERATOR SPACES 29

the last line by definition of [fkl] ∈ Ball(Mm(X∗)).
Since ‖[iX(xij)]‖n equals the supremum above, and sinceMm(X∗) ∼=

CB(X,Mm), to see that iX is completely isometric, it suffices to
prove the Claim: for a given n ∈ N, ε > 0, and [xkl] ∈Mn(X), there
exists an integer m and a completely contractive u : X → Mm such
that ‖[u(xkl)]‖ ≥ ‖[xkl]‖ − ε. In fact this Claim follows immediately
(with ε = 0 and m = n) from Corollary 1.2.12.

Remark. Because of its independent interest, we will give an-
other alternative proof of the Claim in the last proof. Let [xij ] ∈
Mn(X) ⊂ Mn(B(H)) ∼= B(H(n)). Thus [xij ] may be viewed as an
operator on H(n). The norm of any operator T ∈ B(K), for any
Hilbert space K, is given by the formula ‖T‖ = sup{|〈Ty, z〉| : y, z ∈
Ball(K)}. Thus in our case,

‖[xij ]‖n = sup{|〈[xij ]y, z〉| : y, z ∈ Ball(H(n))}.

So, if ε > 0 is given, there exists y, z ∈ Ball(H(n)) such that |〈[xij ]y, z〉| >
‖[xij ]‖n − ε. If y = (ζk) and z = (ηk), with ζk, ηk ∈ H, then
〈[xij ]y, z〉 =

∑
i,j〈xijζj , ηi〉, and so∣∣∣∑

i,j

〈xijζj , ηi〉
∣∣∣ ≥ ‖[xij ]‖ − ε.

Let K = Span {ζ1, . . . , ζn, η1, . . . , ηn} in H. This is finite dimen-
sional, and so there is an isometric ∗-isomorphism π : B(K)→Mm,
where m = dim(K). Then π is completely contractive by Proposition
1.2.6. Let PK be the projection from H onto K. Let T : B(H) →
B(K) be the function T (x) = PKx|K . By an exercise at the end of
the section, T is completely contractive. Let u = π ◦T , which will be
completely contractive too. Now 〈[T (xij)]y, z〉 =

∑
i,j〈T (xij)ζj , ηi〉,

and so

‖[T (xij)]‖n ≥
∣∣∣∑
i,j

〈T (xij)ζj , ηi〉
∣∣∣ =

∣∣∣∑
i,j

〈PKxijζj , ηi〉
∣∣∣ =

∣∣∣∑
i,j

〈xijζj , ηi〉
∣∣∣,

the last step since ηi ∈ K. Thus,

‖[u(xij)]‖n = ‖[π(T (xij))]‖n = ‖[T (xij)]‖n ≥
∣∣∣∑
i,j

〈xijζj , ηi〉
∣∣∣ ≥ ‖[xij ]‖−ε,

using the fact at the end of the last paragraph. This proves the
Claim.
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1.3.2 From 1.3.1 we have for any [xij ] ∈Mn(X) that

‖[xij ]‖n = sup{‖[ϕkl(xij)]‖ : m ∈ N, [ϕkl] ∈ Ball(Mm(X∗))} (1.14)

There is a canonical map θ : Mn(X) → CB(X∗,Mn), namely
θ([xij ])(ϕ) = [ϕ(xij)], and (1.14) says that θ is an isometry. Note
that if [xij ] ∈ Mn(X), and if (ϕt) is a net in X∗ converging weak*
to ϕ ∈ X∗, then ϕt(xij) → ϕ(xij), and so [ϕt(xij)] → [ϕ(xij)] in
norm in Mn, and hence also weak*. Thus the range of θ is inside
w∗CB(X∗,Mn). On the other hand, if u ∈ w∗CB(X∗,Mn), then
u corresponds to a matrix [ηij ] ∈ Mn(X∗∗). If (ϕt) is a net in X∗

converging weak* to ϕ ∈ X∗, then u(ϕt) = [ηij(ϕt)] → u(ϕ) =
[ηij(ϕ)] in Mn, and so ηij(ϕt) → ηij(ϕ) for each i, j. Thus ηij is
weak* continuous and so ηij = iX(xij) for some xij ∈ X. Clearly
θ([xij ]) = u. In other words, θ is an isometry from Mn(X) onto
w∗CB(X∗,Mn):

Mn(X) ∼= w∗CB(X∗,Mn) ⊂ CB(X∗,Mn). (1.15)

Another consequence of 1.3.1, is that if X is an operator space
which as a Banach space is reflexive, then X ∼= X∗∗ completely
isometrically.

1.3.3 (The adjoint map) The ‘adjoint’ or ‘dual’ u∗ of a com-
pletely bounded map u : X → Y between operator spaces is com-
pletely bounded from Y ∗ to X∗, with ‖u∗‖cb = ‖u‖cb. Indeed if
[uij ] ∈Mn(CB(X,Y )) then u∗ij : Y ∗ → X∗ and

‖[u∗ij ]‖n = sup{‖[u∗ij(ϕkl)]‖ : [ϕkl] ∈ Ball(Mm(Y ∗)),m ∈ N}.

However

‖[u∗ij(ϕkl)]‖ = sup{‖[u∗ij(ϕkl)(xrs)]‖ : [xrs] ∈ Ball(Mp(X)), p ∈ N},
= sup{‖[ϕkl(uij(xrs))]‖ : [xrs] ∈ Ball(Mp(X)), p ∈ N},

and it follows by combining the last two centered equations, and
using (1.14), that

‖[u∗ij ]‖n = sup{‖[uij(xrs)]‖ : [xrs] ∈ Ball(Mp(X)), p ∈ N}
= ‖[uij ]‖n.

Thus ∗ : CB(X,Y )→ CB(Y ∗, X∗) is a complete isometry.
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Direct computations from the definitions also show that if u is
a complete quotient map then u∗ is a complete isometry (exercise).
It is slightly harder to see that if u is completely isometric then
u∗ is a complete quotient map. This requires Wittstock’s extension
theorem, which we will prove later using elementary properties of
the ‘Haagerup tensor product’. The crux of Wittstock’s result is
that if X ⊂ Y then any complete contraction w : X → Mn has a
completely contractive extension û : Y → Mn. To see that u∗ is
a complete quotient map if u : X → Y is completely isometric, let
[ϕij ] ∈ Ball(Mn(X∗)). By (1.6) we may regard [ϕij ] as a complete
contraction g : X → Mn. By Wittstock’s extension theorem there
exists a complete contraction w : Y →Mn with w|u(X) = g ◦ u−1 on
u(X). By (1.6) we may regard w as a matrix [ψij ] ∈ Ball(Mn(Y ∗)).
We claim that [u∗(ψij)] = [ϕij ]. Indeed, if x ∈ X then

[u∗(ψij)(x)] = [ψij(u(x))] = w(u(x)) = g(u−1(u(x)) = g(x) = [ϕij(x)].

Thus u∗ is a complete quotient map. Conversely, if u∗ is a complete
quotient map then u∗∗ is a complete isometry, so that u is a complete
isometry (using 1.3.1). Thus u is a complete isometry if and only if
u∗∗ is a complete isometry.

1.3.4 (Duality of subspaces and quotients) The operator space
versions of the usual Banach duality of subspaces and quotients follow
easily from 1.3.3. If X is a subspace of Y , then we have X∗ ∼= Y ∗/X⊥

and (Y/X)∗ ∼= X⊥. Indeed the dual of the inclusion map i : X ↪→ Y
will be a complete quotient map i∗ : Y ∗ → X∗, which induces a
complete isometry X∗ ∼= Y ∗/Ker(i∗) = Y ∗/X⊥. Similarly, the dual
of the canonical quotient map q : Y → Y/X is the canonical complete
isometry q∗ : (Y/X)∗ → Y ∗ which we know from the Banach space
case has range X⊥.

The predual versions go through too with the same proofs as
in the Banach space case in a functional analysis course: if X is a
w∗-closed subspace of a dual operator space Y , then (Y∗/X⊥)∗ ∼=
(X⊥)⊥ = X as dual operator spaces. Also, (X⊥)∗ ∼= Y/(X⊥)⊥ =
Y/X completely isometrically. These use the facts in the last para-
graph, and the Banach space fact that (X⊥)⊥ = X.

1.3.5 (Good and bad preduals) If X is an operator space which
has a predual Banach space Z, then there is only one way to give Z
an operator space structure with any hope that Z∗ ∼= X completely
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isometrically. Namely, view Z ⊂ X∗ and give Z the operator space
structure inherited from X∗. That is, define

‖[zij ]‖n = sup{‖[〈xpq, zij〉]‖ : [xpq] ∈ Ball(Mm(X)),m ∈ N}, (1.16)

where 〈·, ·〉 is the pairing between X and Z. Unfortunately, even then
Z∗ may fail to be completely isometric to X. We shall see an example
of this later. Thus there may be ‘good’ and ‘bad’ Banach space
preduals of an operator space X (the bad ones having no operator
space structure whose operator space dual is X).

1.3.6 (The trace class operator space) If H is a Hilbert space then
B(H) is a dual Banach space, and like any von Neumann algebra
its predual is unique (this is Sakai’s theorem). By operator theory,
the predual Banach space is the trace class S1(H). Fortunately, this
(unique) predual Banach space S1(H) is ‘good’ in the sense of 1.3.5.
More precisely, let us equip its predual S1(H) with the operator space
structure it inherits from B(H)∗ via the canonical isometric inclusion
S1(H) ↪→ B(H)∗. Then we claim that B(H) ∼= S1(H)∗ completely
isometrically. Indeed the canonical map ρ : B(H) → S1(H)∗ is
completely contractive by definition. Indeed if X,Z are as in 1.3.5,
then by definition we equip Z with the the operator space structure
making the canonical map θ : Z → X∗ a complete isometry. Then
the map X → Z∗ taking x ∈ X to θ∗(x̂) is a complete contraction,
and this is the canonical map from X into Z∗. To see that ρ is
completely isometric, we use the second proof of 1.3.1, given in the
Remark after that result. This shows that for any n ∈ N, ε > 0,
and [xkl] ∈ Mn(B(H)), we can find an integer m and a completely
contractive u : B(H) → Mm such that ‖[u(xkl)]‖ ≥ ‖[xkl]‖ − ε. We
recall that u is the composition of maps π and T there. Since Mm

and B(K) are finite dimensional, π is w∗-continuous. If xt → x
weak* in B(H), and if ζ, η ∈ K then

〈T (xt)ζ, η〉 = 〈xtζ, η〉 → 〈xζ, η〉 = 〈T (x)ζ, η〉,

so that T is w∗-continuous. Hence u is w∗-continuous. By the ar-
gument in 1.3.2, u corresponds to a matrix [zij ] ∈ Mm(S1(H)), and
by (1.16) the norm of this matrix equals the ‘cb-norm’ of u, which is
≤ 1. Finally, we have

‖[xkl]‖ − ε ≤ ‖[u(xkl)]‖ = ‖[〈xkl, zij〉]‖ ≤ ‖[ρ(xkl)]‖n.
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Since ε > 0 was arbitrary, we have proved the desired reverse in-
equality. Thus ρ is a complete isometry.

Similarly, B(K,H) is the dual operator space of the space S1(H,K)
of trace class operators, the latter regarded as a subspace ofB(K,H)∗.
Henceforth, when we write S1(H,K) we will mean the operator space
predual of B(K,H) described above. Similarly, we will henceforth
also view S1

n = M∗n as an operator space.

Lemma 1.3.7. Any w∗-closed subspace X of B(H) is a dual oper-
ator space. Indeed, if Y = S1(H)/X⊥ is equipped with its quotient
operator space structure inherited from S1(H), then X ∼= Y ∗ com-
pletely isometrically.

Proof. This follows from 1.3.4 and 1.3.6.

In particular this shows that any von Neumann algebra equipped
with its ‘natural’ operator space structure (see 1.2.5) is a dual oper-
ator space. So they also have ‘good’ preduals.

The converse of 1.3.7 is true too, as we see next, so that ‘dual
operator spaces’, and the w∗-closed subspaces of some B(H), are
essentially the same thing.

Lemma 1.3.8. Any dual operator space is completely isometrically
isomorphic, via a homeomorphism for the w∗-topologies, to a w∗-
closed subspace of B(H), for some Hilbert space H.

Proof. Suppose that W is a dual operator space, with predual X.
Let Y = C, and recall from 1.2.18 the construction of a complete
isometry

W = CB(X,Y ) −→ ⊕∞x∈I Mnx(Y ) = ⊕x∈I Mnx ,

namely the map J taking w ∈W to the tuple ([〈w, xij〉])x in ⊕xMnx .
Since the maps w 7→ 〈w, xij〉 are w∗-continuous for any fixed x ∈ I,
and since ⊕fin

x S1
nx is dense in the Banach space predual ⊕1

x S
1
nx of

⊕xMnx , it is easy to see that J is w∗-continuous too. We recall
a basic convergence principle from functional analysis: If D is a
set whose span is dense in a normed space E, then a bounded net
ϕt

w∗−→ ϕ in E∗ if and only if ϕt(x) → ϕ(x) for all x ∈ D. Thus
to show that J is w∗-continuous, it suffices to show that if a ∈ I
is fixed, and if z ∈ S1

n where n = na, and if εa : S1
na → ⊕

1
x S

1
nx
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is the canonical inclusion map, and if ϕt → ϕ weak* in X∗, then
〈J(ϕt), εa(z)〉 → 〈J(ϕ), εa(z)〉. However

〈J(ϕt), εa(z)〉 =

n∑
i,j

ϕt(aij)zij →
n∑
i,j

ϕ(aij)zij = 〈J(ϕ), εa(z)〉.

So J is w∗-continuous. We will use a consequence of the Krein-
Smulian theorem, namely, that a linear w*-continuous isometry u : E →
F between dual Banach spaces has w*-closed range, and u is a w*-w*-
homeomorphism onto Ran(u). Hence W is completely isometrically
and w∗-homeomorphically isomorphic to a w∗-closed subspace of the
W ∗-algebra ⊕xMnx . If the latter is regarded as a von Neumann
subalgebra of B(H) say, then W is completely isometrically and w∗-
homeomorphically isomorphic to a w∗-closed subspace of B(H).

1.3.9 (W ∗-continuous extensions) If X and Y are two operator
spaces and if u : X → Y ∗ is completely bounded, then its (unique)
w∗-continuous linear extension ũ : X∗∗ → Y ∗ is completely bounded,
with ‖ũ‖cb = ‖u‖cb. Indeed recall that this w∗-continuous extension
is ũ = i∗Y ◦ u∗∗; and clearly

‖ũ‖cb = ‖i∗Y ◦ u∗∗‖cb ≤ ‖i∗Y ‖cb ‖u∗∗‖cb = ‖u‖cb,

using the first paragraph in 1.3.3, whereas ‖ũ‖cb ≥ ‖u‖cb since ũ
extends u. Note that since ũ is w∗-continuous, we have ũ(X∗∗) ⊂
u(X)

w∗
. The above also shows that

CB(X,Y ∗) = w∗CB(X∗∗, Y ∗) (1.17)

isometrically via the mapping u 7→ ũ. Indeed note that if g ∈
w∗CB(X∗∗, Y ∗) then g = g̃|X , since both of these maps are w∗-
continuous and they agree on the w∗-dense subset X.

By 1.3.6, the last paragraph applies in particular to B(H) valued
maps.

1.3.10 (The second dual) Let X be an operator space, and fix
n ∈ N. We wish to compare the spaces Mn(X∗∗) (equipped with
its ‘operator space dual’ matrix norms as in 1.2.19), and Mn(X)∗∗.
First note that they can be canonically identified as topological vector
spaces, as may Mn(X∗) and Mn(X)∗. Indeed note that Mn(X) is a
direct sum of n2 copies of X, and so we can apply the principles in
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Exercise (3) at the end of this section. Applying these Banach space
principles, we see that we have bicontinuous isomorphisms Mn(X) ∼=
X⊕∞ · · ·⊕∞X and Mn(X∗∗) ∼= X∗∗⊕∞ · · ·⊕∞X∗∗. Hence we have

Mn(X)∗∗ ∼= (X∗ ⊕1 · · · ⊕1 X∗)∗ ∼= X∗∗ ⊕∞ · · · ⊕∞ X∗∗ ∼= Mn(X∗∗).

If η ∈ Mn(X)∗∗, let [ηij ] be the corresponding matrix in Mn(X∗∗),
via the isomorphisms in the last centered equation. We will prove in
1.3.12 below that the map η → [ηij ] is an isometry. As a first easy
step, let us check that it is a contraction. If η ∈ Ball(Mn(X)∗∗), then
by Goldstine’s lemma in functional analysis, there is a net (xs)s in
Ball(Mn(X)) such that xs → η in the w∗-topology of Mn(X)∗∗. This
means that ϕ(xs) → η(ϕ) for any ϕ ∈ Mn(X)∗. Since Mn(X)∗ ∼=
Mn(X∗) and Mn(X)∗∗ ∼= Mn(X∗∗) bicontinuously, this is equivalent
to

n∑
i,j=1

ϕi,j(x
s
i,j)→

n∑
i,j=1

ηi,j(ϕi,j), ϕi,j ∈ X∗,

which in turn is equivalent to ϕ(xsi,j)→ ηi,j(ϕ) for all i, j = 1, · · · , n
and ϕ ∈ X∗. Let [ϕpq] ∈ Ball(Mm(X∗)), for some m ≥ 1. We deduce
that

‖[〈ηij , ϕpq〉]‖ = lim
s
‖[〈ϕpq, xsij〉]‖ ≤ 1,

by (1.4) or (1.14). Thus ‖[〈ηij , ϕpq〉]‖ ≤ 1. By (1.4) again, we deduce
that ‖[ηij ]‖Mn(X∗∗) ≤ 1, which proves the result.

Note too that the map η → [ηij ] above restricts to the identity
map on Mn(X), by the last part of the aforementioned Exercise (3)
at the end of the section.

1.3.11 (The second dual of a C∗-algebra) If A is a C∗-algebra, then
there are at least three canonical norms one could put on Mn(A∗∗).
Fortunately, they are all the same, as we now show. The first two
are the ones discussed in 1.3.10. The third is the one from 1.2.5,
arising from the fact that the second dual A∗∗ of any C∗-algebra is a
C∗-algebra, and hence has a canonical operator space structure. To
see that these three are the same, we will need to state some notation.
To avoid confusion, we state that whenever we write Mn(A∗∗) below,
we are equipping this space with its ‘operator space dual’ matrix
norms (see 1.2.19); thus Mn(A∗∗) ∼= CB(A∗,Mn) isometrically. Let
πu : A → B(Hu) denote the universal representation of A, and we
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write A†† for the von Neumann algebra πu(A)′′. The claim will follow
if we can prove for any fixed n ≥ 1 that

Mn(A)∗∗ ∼= Mn(A∗∗) ∼= Mn(A††) isometrically (1.18)

via the canonical maps. The first of these maps is the contraction
from Mn(A)∗∗ to Mn(A∗∗) discussed in 1.3.10. The second map in
(1.18) is (π̃u)n, which is a contraction since according to 1.3.9, the
mapping π̃u is a complete contraction. To establish (1.18), we need
only prove that the resulting contraction ρ : Mn(A)∗∗ −→ Mn(A††)
is isometric. It is clearly one-to-one. Of course Mn(A)∗∗ is also a
C∗-algebra. Claim: ρ is w∗-continuous. Regarding ρ as valued in

B(H
(n)
u ), we have 〈 ρ(η) ζ, ξ〉 =

∑
i,j〈π̃u(ηij)ζj , ξi〉, for ζ = [ζi], ξ =

[ξi] ∈ H(n)
u , and η = [ηij ] as in 1.3.10. If ηs → η weak* in Mn(A)∗∗

then the argument in 1.3.10 shows also that ηsi,j → ηi,j weak* in
A∗∗, and so 〈π̃u(ηsij)ζj , ξi〉 → 〈π̃u(ηij)ζj , ξi〉. Hence 〈 ρ(ηs) ζ, ξ〉 →
〈 ρ(η) ζ, ξ〉, which implies that ρ is w∗-continuous. Thus ρ is the
unique w∗-continuous extension of (πu)n to Mn(A)∗∗, which is a ∗-
homomorphism. Since it is one-to-one it is isometric.

The last result has many consequences. For example, we can use
it to see that S∞(H)∗ = S1(H) completely isometrically. Indeed,
since S∞(H)∗∗ = B(H) completely isometrically, S∞(H)∗ must be
the unique operator space predual S1(H) of B(H) (see 1.3.6). Also
we obtain:

Theorem 1.3.12. IfX is an operator space thenMn(X)∗∗ ∼= Mn(X∗∗)
isometrically for all n ∈ N (via an isomorphism extending the identity
map on Mn(X)).

Proof. Choose a C∗-algebra A with X ⊂ A completely isometri-
cally. Then X∗∗ ⊂ A∗∗ completely isometrically by 1.3.3, hence we
have both Mn(X)∗∗ ⊂Mn(A)∗∗, and Mn(X∗∗) ⊂Mn(A∗∗), isometri-
cally. Under the identifications between Mn(A)∗∗ and Mn(A∗∗) and
between Mn(X)∗∗ and Mn(X∗∗) discussed above, these two embed-
dings are easily seen to be the same. That is, the diagram below
commutes:

Mn(A)∗∗ −→ Mn(A∗∗)x x
Mn(X)∗∗ −→ Mn(X∗∗)

Hence the isometry Mn(A∗∗) = Mn(A)∗∗ provided by 1.3.11, implies
that we also have Mn(X∗∗) = Mn(X)∗∗ isometrically.
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1.3.13 (Duality of Min and Max) We will prove later in 3.1.10 that
for any Banach space E, we have

Min(E)∗ = Max(E∗) and Max(E)∗ = Min(E∗).

1.3.14 (The 1-direct sum) For a family {Xλ : λ ∈ I} of operator
spaces, we give⊕1

λXλ its canonical ‘predual operator space structure’
(see 1.3.5), as the predual of the operator space ⊕∞λ X∗λ. It is easy to
argue directly from the definitions that the canonical inclusion and
projection maps ελ and πλ between ⊕1

λXλ and its ‘λth summand’
are complete isometries and complete quotient maps respectively.
Or, to see that ελ : Xλ → ⊕1

λXλ is a complete isometry, consider the
following sequence of canonical maps:

Xλ −→ ⊕1
λXλ ⊂ (⊕∞λ X∗λ)∗,

and let u be the composition of all these maps. On the other hand,
the dual of the canonical projection map ⊕∞λ X∗λ → X∗λ (which is a
complete quotient map), is a complete isometry j : X∗∗λ → (⊕∞λ X∗λ)∗.
Moreover, the range of u falls within j(X∗∗λ ), and j−1 ◦ u is the
complete isometry from Xλ into its second dual. This implies that
the first of these maps in the sequence, ελ, is a complete isometry.

Next we observe that ⊕1
λ Xλ is a ‘good predual’ of ⊕∞λ X∗λ, in

the sense of 1.3.5. That is,

(⊕1
λ Xλ)∗ ∼= ⊕∞λ X∗λ as dual operator spaces. (1.19)

Indeed, it is easy to see (if necessary by an argument early in 1.3.6),
that the canonical map θ : ⊕∞λ X∗λ → (⊕1

λ Xλ)∗ is a complete con-
traction. On the other hand, an element in Ball(Mn((⊕1

λ Xλ)∗))
may be regarded as a complete contraction from ⊕1

λXλ into Mn.
Composing this map with each ελ, we get a tuple in the ball of
⊕∞λ CB(Xλ,Mn). Since CB(Xλ,Mn) ∼= Mn(X∗λ), we actually ob-
tain an element in the ball of Mn(⊕∞λ X∗λ) ∼= ⊕∞λ Mn(X∗λ). It is easy
to see from all this that θ is a complete isometry.

Corollary 1.3.15. Any operator space X is a complete quotient of
a 1-sum of spaces of the form S1

n = M∗n.

Proof. The map J in the proof of 1.3.8 is a weak* continuous com-
plete isometry. Thus by Exercise (5) below, J = q∗ for a complete
quotient map q from a 1-sum of spaces of the form S1

n = M∗n, onto
X.
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1.3.16 We end this section with an example of an operator space
which is a dual Banach space, but has no ‘good’ operator space
predual in the sense of 1.3.5. Let B = B(H) with its canonical
matrix norms, and let K be the compact operators on H. Then
Q = B/K is the well known Calkin algebra, which is a C∗-algebra
and hence has a canonical operator space structure. The only fact
we will need about the Calkin algebra is that it is not commutative.
Let X = B(H) but with matrix norms

|||[xij ]|||n = max{‖[xij ]‖Mn(B), ‖[q(xji)]‖Mn(Q)}, [xij ] ∈Mn(X),

where q : B→ Q is the canonical quotient map. One can easily check
that X is an operator space, for example by appealing to Ruan’s
theorem. As a Banach space X is just B, since q is a contraction (so
that |||x|||1 = ‖x‖B). Thus X has a unique Banach space predual
S1(H), the trace class. We will show that this is a ‘bad predual’.

Notice that |||·|||n restricted to the copy ofMn(K) is just the usual
norm, since q annihilates K. Thus if Y = S1(H) with its canonical
‘predual matrix norms’ from 1.3.5, that is, the matrix norms coming
from its duality with (X, {||| · |||n}), then for [yij ] ∈Mn(Y ) we have

‖[yij ]‖Mn(Y ) = sup{‖[< yij , xkl >]‖ : [xkl] ∈ Ball(Mm(X)),m ∈ N}
≥ sup{‖[< yij , xkl >]‖ : [xkl] ∈ Ball(Mm(K)),m ∈ N}
= ‖[yij ]‖Mn(K∗) = ‖[yi,j ]‖Mn(S1(H)),

where the last norm is the usual operator space structure of S1(H)
(see 1.3.6). Thus, if [xij ] ∈Mn(X), then

‖[xij ]‖Mn(Y ∗) = sup{‖[< xij , ykl >]‖ : [ykl] ∈ Ball(Mm(Y )),m ∈ N}
≤ sup{‖[< xij , ykl >]‖ : [ykl] ∈ Ball(Mm(S1(H))),m ∈ N}
= ‖[xij ]‖Mn(B),

by the fact in 1.3.6 that S1(H)∗ = B completely isometrically. Hence
if Y ∗ = X completely isometrically, then |||[xij ]|||n ≤ ‖[xij ]‖Mn(B).
The reverse inequality follows from the definition of |||[xij ]|||n, and so
|||[xij ]|||n = ‖[xij ]‖Mn(B). Therefore, ‖[q(xji)]‖Mn(Q) ≤ ‖[xij ]‖Mn(B)

for all [xij ] ∈ Mn(X). If [zij ] ∈ Mn(K), then ‖[q(xji)]‖Mn(Q) =
‖[q(xji + zji)]‖Mn(Q) ≤ ‖[xij + zij ]‖Mn(B). Taking the infimum over
such zij ∈ K, we get ‖[q(xji)]‖Mn(Q) ≤ ‖[q(xij)]‖Mn(Q). Symmetry
implies that this inequality is in fact an equality. But we claim
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that the only unital C*-algebras A with ‖[aji]‖n = ‖[aij ]‖n, for all
n ∈ N and [aij ] ∈Mn(A), are the commutative ones, and the Calkin
algebra is not commutative! Indeed if A is any unital C*-algebra, and
if A◦ is A with the reversed multiplication, then A◦ is a unital C*-
algebra, and its canonical matrix norm are given by ‖[aij ]‖Mn(A◦) =
‖[aji]‖Mn(A) (we leave this as an exercise). Thus if the identity in the
claim holds, then the identity map A → A◦ is a complete isometry.
By Corollary 2.1.7, it is a homomorphism, so that A is commutative.

Historical note: The results in Section 2.2 are due to Blecher
(see [2], which was written close to the date of [8, 15], although it
appeared much later), with the following main exceptions. The fact
that X ⊂ X∗∗ completely isometrically was independently noticed
in [8, 15]. Effros and Ruan had noticed 1.3.8 via a different route
[14]. Item 1.3.16 is a simplification by Blecher and Magajna [5] of
examples of Effros-Ozawa-Ruan, and Peters-Wittstock. Le Merdy
was the first to find an example of a ‘bad predual’ in the sense of
1.3.5.

Exercises.

(1) As in the Exercise 1 at the end of Chapter 1, show that the map
T 7→ T ∗ is a complete isometry from CB(X,Y ) into CB(Y ∗, X∗),
and show that this map is onto if X and Y are reflexive.

(2) Show that if u is a complete quotient map then u∗ is a complete
isometry.

(3) Show that if F is any Banach space, and if E = F ⊕ · · · ⊕ F
is a finite direct sum of n copies of F , equipped with any norm
such that the n canonical inclusions of F into E are isometries,
then E ∼= F ⊕1 · · · ⊕1 F ∼= F ⊕∞ · · · ⊕∞ F bicontinuously. Also,
if Z = F ∗ ⊕ · · · ⊕ F ∗, equipped with any norm such that the
n canonical inclusions of F ∗ into Z are isometries, show that
Z ∼= E∗ bicontinuously, via the map θ(ϕ1, · · · , ϕn)(x1, · · · , xn) =∑n

k=1 ϕk(xk), for ϕk ∈ F ∗, xk ∈ F . Show that a similar state-
ment holds for W = F ∗∗ ⊕ · · · ⊕ F ∗∗ equipped with any norm
such that the n canonical inclusions of F ∗∗ into W are isome-
tries. Moreover, show that the resulting isomorphism E∗∗ ∼= W
‘restricts’ on E to the ‘identity map’.

(4) Show that the 1-sum has the following universal property: If Z is
an operator space and if uλ : Xλ → Z are completely contractive
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linear maps, then there is a canonical complete contraction u : ⊕1
λ

Xλ → Z such that u ◦ ελ = uλ.

(5) Show that if u : X∗ → Y ∗ is a weak* continuous isometry (resp.
complete isometry), where X and Y are Banach spaces (resp.
complete operator spaces), then u = q∗ for a 1-quotient map
(resp. complete quotient map) q : Y → X. [Hint: By Krein-
Smulian, u is a weak* homeomorphism and its range N is weak*
closed. Thus we can assume X∗ = N,X = Y/N⊥, and u is the
inclusion N → Y ∗, in which case we can take q : Y → Y/N⊥ to
be the canonical quotient map.]

(6) If A is any unital C*-algebra, and if A◦ is A with the reversed
multiplication, show that A is a unital C*-algebra, and its canon-
ical matrix norms are given by ‖[aij ]‖Mn(A◦)) = ‖[aji]‖Mn(A)).



Chapter 2

Addendum to Lecture 2/3
(Operator spaces)

2.1 Operator systems

2.1.1 (Unital operator spaces) A unital operator space is a subspace
S of a unital C∗-algebra A, which contains the identity of A. There
are important in studying noncommutative function spaces (we recall
in the study of classical abstract function spaces (spaces of functions
on a topological space) one often assumes the space ‘contains con-
stants’. We will not say much about these spaces–just giving their
abstract characterization (without proof) due to Blecher and Neal:

Theorem 2.1.2. If X is an operator space and u ∈ X with ‖u‖ = 1
then (X,u) is a unital operator space iff

max{‖un+ ikx‖ : k = 0, 1, 2, 3} ≥
√

1 + ‖x‖, n ∈ N, x ∈Mn(X).

This is also equivalent to

‖[ un x ]‖ =

∥∥∥∥[ unx
]∥∥∥∥ , n ∈ N, x ∈Mn(X), ‖x‖ = 1.

Here un is the diagonal matrix u ⊗ In in Mn(X) with u in each
diagonal entry. Indeed in the first result one only needs x of ‘small
norm’, where ‘small’ can differ for each n.

2.1.3 (Operator systems) An operator system is a subspace S of a
unital C∗-algebra A, which contains the identity of A, and which is

41



42CHAPTER 2. ADDENDUMTO LECTURE 2/3 (OPERATOR SPACES)

selfadjoint, that is, x∗ ∈ S if and only if x ∈ S. There is an abstract
characterization of these due to Choi and Effros. A subsystem of an
operator system S is a selfadjoint linear subspace of S containing
the ‘identity’ 1 of S. If S is an operator system, a subsystem of
a C∗-algebra A, then S has a distinguished ‘positive cone’ S+ =
{x ∈ S : x ≥ 0 in A}. We also write Ssa for the real vector space
of selfadjoint elements x (i.e. those satisfying x = x∗) in S. Then
S has an associated ordering ≤, namely we say that x ≤ y if x, y
are selfadjoint and y − x ∈ S+. Note that if x ∈ S then x+x∗

2 and
x−x∗

2i are selfadjoint, and so any x ∈ S is of the form x = h+ ik for
h, k ∈ Ssa. Also, if h ∈ Ssa then ‖h‖1 + h and ‖h‖1− h are positive.
Thus Ssa = S+ − S+.

A linear map u : S → S ′ between operator systems is called ∗-
linear if u(x∗) = u(x)∗ for all x ∈ S. Some authors say that such
a map is selfadjoint. We say that u is positive if u(S+) ⊂ S ′+. By
facts at the end of the last paragraph, any x ∈ S may be written as
x = x1−x2 + i(x3−x4), and from this it is easy to see that a positive
map u : S → S ′ is ∗-linear. Indeed,

u(x∗) = u(x1 − x2 − i(x3 − x4)) = u(x1)− u(x2)− i(u(x3)− u(x4)),

whereas

u(x)∗ = (u(x1)−u(x2)+i(u(x3)−u(x4)))∗ = u(x1)−u(x2)−i(u(x3)−u(x4)).

The operator system Mn(S), which is a subsystem of Mn(A), has a
‘positive cone’ too, and thus it makes sense to talk about completely
positive maps between operator systems. These are the maps u such
that un = IMn⊗u : Mn(S)→Mn(S ′) is positive for all n ∈ N. Indeed
the morphisms in the category of operator systems are often taken
to be the unital completely positive maps. Any ∗-homomorphism π
between C∗-algebras is clearly positive, and applying this fact to πn
shows that π is completely positive. Completely positive maps are
discussed in very many places in the literature (see e.g. [10, 23]), and
we shall be brief here.

Suppose that S is a subsystem of a unital C∗-algebra. By the
Hahn–Banach theorem, the set of states of S (that is, the set of
ϕ ∈ S∗ with ϕ(1) = ‖ϕ‖ = 1) is just the set of restrictions of states
on the containing C∗-algebra to S. Using this fact, we have that Ssa
(resp. S+) is exactly the set of elements x ∈ S such that ϕ(x) ∈ R
(resp. ϕ(x) ≥ 0) for all states ϕ of S (by the C∗-algebra case of these
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results). From this it is clear that if u : S1 → S2 is a contractive unital
linear map between operator systems, then u is a positive map (for
if x ∈ S1+, and if ϕ is a state on S2 then ϕ◦u is a state of S1, so that
ϕ(u(x)) ≥ 0; and so u(x) ≥ 0). Applying this principle to un, we
see that a completely contractive unital linear map between operator
systems is completely positive.

Clearly an isomorphism between operator systems which is unital
and completely positive, and has completely positive inverse, pre-
serves all the ‘order’. Such a map is called a complete order iso-
morphism. The range of a completely positive unital map between
operator systems is clearly also an operator system; we say that such
a map is a complete order injection if it is a complete order isomor-
phism onto its range.

The following simple fact relates the norm to the matrix order,
and is an elementary exercise using the definition of a positive oper-
ator. Namely, if x is an element of a unital C∗-algebra or operator
system A, or if x ∈ B(K,H), then[

1 x
x∗ 1

]
≥ 0 ⇐⇒ ‖x‖ ≤ 1. (2.1)

Here ‘≥ 0’ means ‘positive in M2(A)’ (or ‘positive in B(H ⊕K)’).

2.1.4 It is easy to see from (2.1) that a completely positive unital
map u between operator systems is completely contractive. (For
example, to see that u is contractive, take ‖x‖ ≤ 1, and apply u2 to
the associated positive matrix in (2.1). This is positive, so that using
(2.1) again we see that ‖u(x)‖ ≤ 1.) Putting this together with some
facts from 2.1.3 we see that a unital map between operator systems
is completely positive if and only if it is completely contractive; and
in this case the map is ∗-linear. If, further, u is one-to-one, then by
applying the above to u and u−1 one sees immediately that a unital
map between operator systems is a complete order injection if and
only if it is a complete isometry.

Theorem 2.1.5. (Stinespring) Let A be a unital C∗-algebra. A
linear map u : A → B(H) is completely positive if and only if there
is a Hilbert space K, a unital ∗-homomorphism π : A→ B(K), and a
bounded linear V : H → K such that u(a) = V ∗π(a)V for all a ∈ A.
This can be accomplished with ‖u‖cb = ‖V ‖2. Also, this equals ‖u‖.
If u is unital then we may take V to be an isometry; in this case we
may view H ⊂ K, and we have u(·) = PHπ(·)|H .
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Proof. The usual proof of this may be found in many places (e.g.
[1, 10, 23]), and it is very similar to the proof of the ‘GNS construc-
tion’ from C∗-algebra theory. Thus we just give a sketch. Given a
completely positive u, the idea to construct π, as in the GNS con-
struction proof, is to find an inner product defined on a simple space
containing H on which A has a natural algebraic representation. In
this case, the space is A⊗H, and we define the representation of A
by π(a)(b ⊗ ζ) = ab ⊗ ζ for a, b ∈ A, ζ ∈ H. We define the inner
product on A⊗H by

〈a⊗ η, b⊗ ζ〉 = 〈T (b∗a)η, ζ〉 , a, b ∈ A, η, ζ ∈ H.

The rest can be left as an exercise, following the model of the GNS
construction.

Proposition 2.1.6. (A Kadison–Schwarz inequality) If u : A → B
is a unital completely positive (or equivalently unital completely con-
tractive) linear map between unital C∗-algebras, then u(a)∗u(a) ≤
u(a∗a), for all a ∈ A.

Proof. By 2.1.5 we have u = V ∗π(·)V , with ‖V ‖ ≤ 1 and π a ∗-
homomorphism. Thus u(a)∗u(a) = V ∗π(a)∗V V ∗π(a)V ≤ V ∗π(a)∗π(a)V =
u(a∗a).

Corollary 2.1.7. Let u : A → B be a completely isometric unital
surjection between unital C∗-algebras. Then u is a ∗-isomorphism.

Proof. By 2.1.6 applied to both u and u−1 we have u(x)∗u(x) ≤
u(x∗x), and u−1(u(x)∗u(x)) ≥ u−1(u(x))∗u−1(u(x)) = x∗x, for all
x ∈ A. Applying u to the last inequality gives u(x)∗u(x) ≥ u(x∗x).
Hence u(x)∗u(x) = u(x∗x). Now use the polarization identity (Φ(x, y) =∑3

k=0 i
kΦ(x, x) for any sesquiliear map Φ(x, y)), to conclude that

u(x)∗u(y) = u(x∗y) for x, y ∈ A. Setting y = 1 gives u(x)∗ = u(x∗),
and so u(x∗y) = u(x∗)u(y). So u is a ∗-isomorphism.

Proposition 2.1.8. Let u : A → B be as in 2.1.6. Suppose that
c ∈ A, and that c satisfies u(c)∗u(c) = u(c∗c). Then u(ac) = u(a)u(c)
for all a ∈ A.

Proof. Suppose that B ⊂ B(H). We write u = V ∗π(·)V as in Stine-
spring’s theorem, with V ∗V = IH . Let P = V V ∗ be the projection
onto V (H). By hypothesis V ∗π(c)∗Pπ(c)V = V ∗π(c)∗π(c)V . For
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ζ ∈ H, set η = π(c)V ζ. Then ‖Pη‖2 = 〈V ∗π(c)∗Pπ(c)V ζ, ζ〉 = ‖η‖2.
Thus Pη = η, and V V ∗π(c)V = π(c)V . Therefore u(a)u(c) =
V ∗π(a)V V ∗π(c)V = V ∗π(a)π(c)V = u(ac).

2.1.9 (Completely positive bimodule maps) An immediate conse-
quence of 2.1.8: Suppose that u : A → B is as in 2.1.6, and that
there is a C∗-subalgebra C of A with 1A ∈ C, such that π = u|C is a
∗-homomorphism. Then

u(ac) = u(a)π(c) and u(ca) = π(c)u(a) (a ∈ A, c ∈ C).

We recall that a map Φ is idempotent if Φ ◦ Φ = Φ.

Theorem 2.1.10. (Choi and Effros) Suppose that A is a unital
C∗-algebra, and that Φ: A → A is a unital, completely positive
(or equivalently by 2.1.4, completely contractive), idempotent map.
Then we may conclude:

(1) R = Ran(Φ) is a C∗-algebra with respect to the original norm,
involution, and vector space structure, but new product r1 ◦Φ
r2 = Φ(r1r2).

(2) Φ(ar) = Φ(Φ(a)r) and Φ(ra) = Φ(rΦ(a)), for r ∈ R and a ∈ A.

(3) If B is the C∗-subalgebra of A generated by the set R, and if R
is given the product ◦Φ, then Φ|B is a ∗-homomorphism from B
onto R.

Proof. (2) By linearity and the fact that a positive map is ∗-linear
(see 2.1.3), we may assume that a, r are selfadjoint. Set

d = d∗ =

[
0 r
r∗ a

]
.

Then Φ2(d2) ≥ (Φ2(d))2 by the Kadison–Schwarz inequality 2.1.6, so
that [

Φ(r2) Φ(ra)
Φ(ar) ∗

]
≥
[

r2 rΦ(a)
Φ(a)r ∗

]
.

Here ∗ is used for a term we do not care about. Applying Φ2 gives[
Φ(r2) Φ(ra)
Φ(ar) ∗

]
≥
[

Φ(r2) Φ(rΦ(a))
Φ(Φ(a)r) ∗

]
.

Thus [
0 Φ(ra)− Φ(rΦ(a))

Φ(ar)− Φ(Φ(a)r) ∗

]
≥ 0,
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which implies that Φ(ra)−Φ(rΦ(a)) = 0 and Φ(ar)−Φ(Φ(a)r) = 0.

(1) By (2) we have for r1, r2, r3 ∈ R that

(r1 ◦Φ r2) ◦Φ r3 = Φ(Φ(r1r2)r3) = Φ(r1r2r3).

Similarly, r1 ◦Φ (r2 ◦Φ r3) = Φ(r1r2r3), which shows that the multipli-
cation is associative. It is easy to check that R (with original norm,
involution, and vector space structure, but new multiplication) sat-
isfies the conditions necessary to be a C∗-algebra. For example:

(r1 ◦Φ r2)∗ = Φ(r1r2)∗ = Φ(r∗2r
∗
1) = r∗2 ◦Φ r∗1.

We check the C∗-identity using the Kadison–Schwarz inequality 2.1.6:

‖r∗ ◦Φ r‖ = ‖Φ(r∗r)‖ ≥ ‖Φ(r)∗Φ(r)‖ = ‖r∗r‖ = ‖r‖2,

and conversely,

‖r‖2 = ‖r∗r‖ ≥ ‖Φ(r∗r)‖ = ‖r∗ ◦Φ r‖.

(3) This will follow if we can prove that Φ(r1r2 · · · rn) = r1 ◦Φ
r2 · · · ◦Φ rn, for ri ∈ R. This follows in turn by induction on n.
Supposing that it is true for n = k, we see that r1 ◦Φ r2 · · · ◦Φ rk+1

equals

Φ((r1◦Φr2 · · ·◦Φrk)rk+1) = Φ(Φ(r1r2 · · · rk)rk+1) = Φ(r1r2 · · · rkrk+1),

using (2) in the last equality.

2.1.11 (The Paulsen system) If X is a subspace of B(H), we define
the Paulsen system to be the operator system

S(X) =

[
CIH X
X? CIH

]
=

{[
λ x
y∗ µ

]
: x, y ∈ X, λ, µ ∈ C

}
in M2(B(H)), where the entries λ and µ in the last matrix stand for
λIH and µIH respectively. The following important lemma shows
that as an operator system (i.e. up to complete order isomorphism)
S(X) only depends on the operator space structure of X, and not
on its representation on H.
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Lemma 2.1.12. (Paulsen) Suppose that for i = 1, 2, we are given
Hilbert spaces Hi,Ki, and linear subspaces Xi ⊂ B(Ki, Hi). Suppose
that u : X1 → X2 is a linear map. Let Si be the following operator
system inside B(Hi ⊕Ki):

Si =

[
CIHi Xi

X?
i CIKi

]
.

If u is contractive (resp. completely contractive, completely isomet-
ric), then

Θ :

[
λ x
y∗ µ

]
7→
[

λ u(x)
u(y)∗ µ

]
is positive (resp. completely positive and completely contractive, a
complete order injection) as a map from S1 to S2.

Proof. Suppose that z is a positive element of S1. Thus

z =

[
a x
x∗ b

]
where a and b are positive. Since z ≥ 0 if and only if z + ε1 ≥ 0 for
all ε > 0, we may assume that a and b are invertible. Then[
a−

1
2 0

0 b−
1
2

] [
a x
x∗ b

] [
a−

1
2 0

0 b−
1
2

]
=

[
1 a−

1
2xb−

1
2

b−
1
2x∗a−

1
2 1

]
≥ 0.

Hence by (2.1), we have that ‖a−
1
2xb−

1
2 ‖ ≤ 1. Applying u we

obtain that ‖a−
1
2u(x)b−

1
2 ‖ ≤ 1. Reversing the argument above now

shows that Θ(z) ≥ 0. So Θ is positive, and a similar argument shows
that it is completely positive if u is completely contractive. By 2.1.4
we have that Θ is completely contractive in that case. If in addition
u is a complete isometry, then applying the above to u and u−1 we
obtain the final assertion.

Historical notes: This section is a slight variant of [4, Section
1.3]; historical attributions are given there.
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Chapter 3

Lecture 3

3.1 Operator space tensor products

Recall that a map T : E × F → Z between vector spaces is called
bilinear if T (x, ·) is linear for each fixed x ∈ E, and T (·, y) is linear
for each fixed y ∈ F . If E and F are vector spaces, we recall that the
(algebraic) tensor product is a pair (E ⊗F,⊗) consisting of a vector
space E⊗F , and a bilinear map ⊗ : E×F → E⊗F (where we write
x ⊗ y for ⊗ applied to the pair (x, y) ∈ E × F ), with the universal
property in the following result:

Proposition 3.1.1. If E and F are vector spaces then there exists
a vector space E⊗F , and a bilinear map ⊗ : E×F → E⊗F whose
range spans E ⊗ F , with the following property:

For every vector space Z, and every bilinear T : E×F → Z, there
exists a linear map T̃ : E ⊗ F → Z such that T̃ (x ⊗ y) = T (x, y)
for all x ∈ E, y ∈ F .

Moreover, this vector space is essentially unique; that is, if V is
another vector space, and ψ : E×F → V is a bilinear map, with the
above property, then there is a vector space isomorphism θ : E⊗F →
V such that θ(x⊗ y) = ψ(x, y) for all x ∈ E, y ∈ F .

Proof. Existence: There are several ways to show that there exists
a space with this property. We assume that the reader has seen one
such method in an algebra course.

Uniqueness: If (V, ψ) is another pair with the above property,
then since E ⊗ F has the above property there exists a linear map

49
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ψ̃ : E ⊗ F → V such that ψ̃(x ⊗ y) = ψ(x, y) for all x ∈ E, y ∈ F .
Similarly, since V has the above property, applying the property to
the bilinear map T = ⊗, there exists a linear map T̃ : V → E ⊗ F
such that T̃ (ψ(x, y)) = x⊗ y for all x ∈ E, y ∈ F . It follows that

ψ̃(T̃ (ψ(x, y))) = ψ̃(x⊗ y) = ψ(x, y).

That is ψ̃ ◦ T̃ =Id on the range of ψ. Since the range of ψ spans V ,
and since ψ̃ ◦ T̃ is linear, we deduce that ψ̃ ◦ T̃ =Id on V . A similar
argument shows that T̃ ◦ ψ̃ = Id on E ⊗ F . So ψ̃ is an isomorphism
from E⊗F → V , and we already saw that ψ̃(x⊗ y) = ψ(x, y) for all
x ∈ E, y ∈ F .

Thus the algebraic tensor product ‘linearizes bilinear maps’.
A special case of this of interest is if ui : Ei → Fi are linear maps

for i = 1, 2. The map E1 × E2 → F1 ⊗ F2 defined by (x1, x2) 7→
u1(x1) ⊗ u2(x2), is bilinear. Linearizing this bilinear map by 3.1.1,
we obtain a linear map E1 ⊗ E2 → F1 ⊗ F2. This map is written as
u1 ⊗ u2 and has the defining property that

(u1 ⊗ u2)(x1 ⊗ x2) = u1(x1)⊗ u2(x2), x1 ∈ E1, x2 ∈ E2.

3.1.2 (The injective tensor product) Suppose that E,F are normed
vector spaces. If (xk)

n
k=1 and (yk)

n
k=1 are finite families in E and

F respectively, then one may define for z =
∑n

k=1 xk ⊗ yk in the
algebraic tensor product E ⊗ F , the quantity∥∥∥∑

k

xk⊗yk
∥∥∥
∨

= sup
{∣∣∣∑

k

ϕ(xk)ψ(yk)
∣∣∣ : ϕ ∈ Ball(E∗), ψ ∈ Ball(F ∗)

}
.

This is a norm on E⊗F . To see this notice that it is fairly obviously
a seminorm (exercise). To see that this is a norm, we rewrite z.
Choose an Auerbach basis (wk)

m
k=1 for the space W = Span({xk :

k = 1, · · · , n}) (look this up on Wiki if you havent seen this before).
Thus we have linear functionals ϕj ∈ Ball(W ∗) with ϕj(wi) = δij . By
the Hahn-Banach theorem these extend to continuous ϕ̃j ∈ E∗. We
can rewrite each xk in terms of this basis, and this allows us to write
z =

∑m
k=1 wk⊗y′k say. If ‖z‖∨ = 0, then for every ϕ ∈ Ball(E∗), ψ ∈

Ball(F ∗) we have
∑

k ϕ(wk)ψ(y′k) = 0. Thus ψ
(∑

k ϕ(wk)y
′
k

)
= 0.

By a corollary to the Hahn-Banach theorem, we have
∑

k ϕ(wk)y
′
k =

0. Setting ϕ = ϕ̃j shows that y′j = 0 for all j, and so z = 0.
The completion of E⊗F in this norm is called the injective tensor

product, and is written as E⊗̌F .
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3.1.3 (Hilbert tensor product) We recall from operator theory that
if H1, H2 are Hilbert spaces then there is at most one inner product
on H1 ⊗H2 satisfying

〈ζ1 ⊗ ζ2, η1 ⊗ η2〉 = 〈ζ1, η1〉 〈ζ2, η2〉, ζ1, η1 ∈ H1, ζ2, η2 ∈ H2.
(3.1)

. Then the completion in the associated norm is a Hilbert space. The
latter is the Hilbert space tensor product, and is written as H1⊗2 H2

or H1 ⊗H2. Note that we have a unitary equivalence

L2(X)⊗2 L2(Y ) ∼= L2(X × Y )

where we are using the product measure on X × Y . For ζ ∈ H1, η ∈
H2 we have

‖ζ ⊗ η‖2 = 〈ζ ⊗ η, ζ ⊗ η〉 = 〈ζ, ζ〉 〈η, η〉 = ‖ζ‖2‖η‖2,

so that ‖ζ⊗η‖ = ‖ζ‖‖η‖. It is easy now to prove that if Tk : Hk → Kk

are contractions between Hilbert spaces, then there is an induced
contraction T1 ⊗ T2 : H1 ⊗H2 → K1 ⊗K2.

3.1.4 (Minimal tensor product) Let X and Y be operator spaces,
and let X ⊗Y denote their algebraic tensor product. We recall from
above that any u =

∑n
k=1 xk ⊗ yk ∈ X ⊗ Y can be associated with

a map ũ : Y ∗ → X defined by ũ(ψ) =
∑

k xk ψ(yk), for ψ ∈ Y ∗.
If u =

∑n
k=1 xk ⊗ ψk ∈ X ⊗ Y ∗ then u can be associated with

a map û : Y → X defined by ũ(y) =
∑

k xk ψk(y), for y ∈ Y .
Both ũ and û are automatically completely bounded by 1.2.7, since
they are linear combinations of scalar functionals multiplied by fixed
operators. Thus the above correspondences between tensor products
and finite rank mappings yield embeddings X ⊗ Y ↪→ CB(Y ∗, X)
and X ⊗ Y ∗ ↪→ CB(Y,X). The minimal tensor product X ⊗min Y
may then be defined to be (the completion of) X ⊗ Y in the matrix
norms inherited from the operator space structure on CB(Y ∗, X)
described in 1.2.18. That is,

X ⊗min Y ↪→ CB(Y ∗, X) completely isometrically. (3.2)

Explicitly, if u =
∑n

k=1 xk ⊗ yk ∈ X ⊗ Y , then the norm of u in
X ⊗min Y equals

sup
∥∥∥[∑

k

xk ψij(yk)
]∥∥∥

Mm(X)
, (3.3)
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the supremum taken over all [ψij ] in the ball of Mm(Y ∗), and all
m ∈ N. Applying (1.14) to (3.3), we see that ‖u‖min equals the more
symmetric form

sup
∥∥∥[ϕrs(∑

k

xk ψij(yk)
)]∥∥∥

Mms

= sup
∥∥∥[∑

k

ϕrs(xk)ψij(yk)
]∥∥∥

Mms

,

(3.4)
the supremum taken over [ϕrs] and [ψij ] in the ball of Ms(X

∗) and
Mm(Y ∗) respectively, and all m, s ∈ N. A similar formula holds in
Mn(X ⊗min Y ):

‖[wrs]‖Mn(X⊗minY ) = sup
{
‖[(ϕkl ⊗ ψij)(wrs)]‖

}
(3.5)

for [wrs] ∈ Mn(X ⊗ Y ), where the supremum is taken over all [ϕrs]
and [ψij ] in the ball of Ms(X

∗) and Mm(Y ∗) respectively, and all
m, s ∈ N, and where ϕkl ⊗ ψij denotes the obvious functional on
X ⊗ Y formed from ϕkl and ψij .

• We see from (3.5) that ⊗min is commutative, that is

X ⊗min Y = Y ⊗min X

as operator spaces. The underlying reason for this is because in
the formulae above we have ϕrs(x)ψij(y) = ψij(y)ϕrs(x).

• It is also easy to see from (3.5) that ⊗min is functorial. That is, if
Xi and Yi are operator spaces for i = 1, 2, and if ui : Xi → Yi are
completely bounded, then the map x⊗y 7→ u1(x)⊗u2(y) on X1⊗
X2 has a unique continuous extension to a map u1 ⊗ u2 : X1 ⊗min

X2 → Y1 ⊗min Y2, with ‖u1 ⊗ u2‖cb ≤ ‖u1‖cb‖u2‖cb. One way to
see this is to note that if [ϕrs] and [ψij ] are in the ball of Ms(Y

∗
1 )

and Mm(Y ∗2 ) respectively, for m, s ∈ N, then 1
‖u1‖cb [ϕrs ◦ u1] and

1
‖u2‖cb [ψij ◦u2] are in the ball of Ms(X

∗
1 ) and Mm(X∗2 ) respectively.

Hence by (3.5) we have

1

‖u1‖cb‖u2‖cb
‖[(ϕkl⊗ψij)((u1⊗u2)wrs)]‖ ≤ ‖[wrs]‖Mn(X1⊗minX2),

for [wrs] ∈Mn(X1⊗X2), and taking the supremum over [ϕrs] and
[ψij ], by (3.5) again we have

1

‖u1‖cb‖u2‖cb
‖[(u1⊗u2)wrs]‖Mn(Y1⊗minY2) ≤ ‖[wrs]‖Mn(X1⊗minX2).
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Thus ‖u1 ⊗ u2‖cb ≤ ‖u1‖cb‖u2‖cb. (As an exercise, the reader
could check that ‖u1 ⊗ u2‖cb = ‖u1‖cb‖u2‖cb, but we shall not
need this.)

• If, further, the ui are completely isometric, then so is u1⊗u2. This
latter fact is called the injectivity of the tensor product. To prove
it, since u1⊗u2 = (u1⊗ I) ◦ (I ⊗u2), we may by symmetry reduce
the argument to the case that Y2 = X2, and u2 = IX2 . Then it is
easy to see that we can suppose that X1 ⊂ Y1 and that u1 is this
inclusion map. In this case, consider the commutative diagram

CB(X∗2 , X1) −→ CB(X∗2 , Y1)x x
X1 ⊗min X2

u1⊗I−→ Y1 ⊗min X2

where the vertical arrows are complete isometries by definition of
⊗min, and the top arrow is a complete isometry (since a map into a
subspace of an operator space clearly has the same norm as when
it is viewed as a map into the bigger space). Hence the bottom
arrow is a complete isometry too, which is what we need.

• For any operator spaces X,Y , we have

X ⊗min Y
∗ ↪→ CB(Y,X) completely isometrically, (3.6)

via the map ∧ : u → û mentioned at the start of 3.1.4. We first
prove this in the case that X = B(H). Consider the sequence of
maps

B(H)⊗min Y
∗ ∧−→ CB(Y,B(H)) ∼= w∗CB(Y ∗∗, B(H)) ⊂ CB(Y ∗∗, B(H)),

where the ‘∼=’ is from (1.17). The composition of these maps is the
complete isometry u 7→ ũ implementing (3.2). Since the last few
maps in the sequence are isometries so is the first one.
For a general operator space X ⊂ B(H) we have a commutative
diagram

B(H) ⊗min Y
∗ ∧−→ CB(Y,B(H))x x

X ⊗min Y
∗ ∧−→ CB(Y,X)

where the left vertical arrow is a complete isometry by the injec-
tivity of ⊗min, and right one is obviously a complete isometry as
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we observed earlier. By the last paragraph, the top arrow is an
isometry, and so the bottom arrow is an isometry too. We leave
the proof that it is a complete isometry to the interested reader.

3.1.5 (Properties of ⊗̌) Simpler versions of all the computations
above give the analogous properties for ⊗̌. For example, X ⊗̌Y ∗ ↪→
B(Y,X) isometrically, for Banach spaces X and Y .

3.1.6 (The spatial tensor product and ⊗min) Suppose that H1, H2

are Hilbert spaces, and consider the canonical map π : B(H1) ⊗
B(H2) → B(H1 ⊗2 H2). This is the map taking a rank one tensor
S⊗T in B(H1)⊗B(H2) to the map S⊗T on H1⊗2H2 taking ζ⊗η to
S(ζ)⊗ T (η). We claim that π actually is a complete isometry when
B(H1)⊗B(H2) is given its norm as a subspace of B(H1)⊗minB(H2).
To see this, we choose a set I such that H1 = `2I , so that we both have

MI
∼= B(H1) ∗-isomorphically, and also H1 ⊗2 H2

∼= H
(I)
2 as Hilbert

spaces. By (3.6) and 1.3.6, B(H1)⊗min B(H2) ↪→ CB(S1(H2),MI).
However, by 1.3.6 and 1.2.23 (5) and (12), we have

CB(S1(H2),MI) ∼= MI(S
1(H2)∗) ∼= MI(B(H2)) ∼= B(H

(I)
2 ) ∼= B(H1⊗2H2),

isometrically. A similar argument proves the complete isometry, and
proves the claim.

Thus if X and Y are subspaces of B(H1) and B(H2) respectively,
then by the injectivity of this tensor product, we have that X⊗minY
is completely isometrically isomorphic to the closure in B(H1⊗2H2)
of the span of the operators x ⊗ y on H1 ⊗2 H2, for x ∈ X, y ∈ Y .
Thus the minimal tensor product of X ⊗ Y may alternatively be
defined to be this subspace of B(H1 ⊗2 H2).

The above implies that the minimal tensor product of C∗-algebras
coincides with the tensor product of the same name used in C∗-algebra
theory, or with the so-called spatial tensor product. We recall that if
A and B are C∗-subalgebras of B(H1) and B(H2) respectively, then
A⊗B may be identified (as above) with a subspace of B(H1⊗2H2),
which is easy to see is actually a ∗-subalgebra. The closure of this,
which is a C∗-algebra, is called the spatial tensor product of A and B,
and is written as A⊗min B. If A and B are also commutative, then
so is A⊗minB, since it is the closure of a commutative ∗-subalgebra.

From the last paragraph it is clear that for any operator space
X,

Mn ⊗min X ∼= Mn(X) (3.7)
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completely isometrically, since both can be completely isometrically
identified with the same subspace of B(`2n ⊗H) ∼= B(H(n)), if X ⊂
B(H). Similarly, Mmn ⊗min X ∼= Mmn(X).

3.1.7 (Uncompleted tensor products) For what follows, it is conve-
nient to state separately a simple property of tensor product norms.
If E and F are incomplete spaces, and α is a tensor norm on Ē ⊗ F̄ ,
then it is usual to write Ē ⊗α F̄ for the completion of Ē ⊗ F̄ with
respect to α. We will always deal with so-called ‘cross norms’; that
is, α(x ⊗ y) = ‖x‖‖y‖ for x ∈ E, y ∈ F . Let us write E ⊗α F for
the (possibly incomplete) subspace E ⊗ F of Ē ⊗ F̄ , equipped with
the norm α. Claim: Ē ⊗α F̄ is the closure (and also the completion)
of E ⊗α F . To see this, we need to show that any u ∈ Ē ⊗α F̄
may be approximated in the norm topology by elements in E ⊗ F .
However, such u may first be approximated in norm by a finite sum
of elementary tensors x ⊗ y, with x ∈ Ē and y ∈ F̄ . Then we can
approximate x⊗y in norm by x′⊗y′, with x′ ∈ E and y′ ∈ F . Hence
u is approximable by elements in E ⊗α F .

3.1.8 (Further properties of ⊗min) For any set I we have

KI ⊗min X ∼= KI(X). (3.8)

To see this, first note that if X ⊂ B(H), then by the injectivity of
⊗min we have KI ⊗min X ⊂ MI ⊗min B(H). By 3.1.6, the latter
space can be identified with a subspace of B(`2I ⊗H) ∼= B(H(I)) ∼=
MI(B(H)) (see 1.2.23 (5)). On the other hand, KI(X) is the closure
of Mfin

I (X) in MI(B(H)). We can express this in the commutative
diagram

B(`2I ⊗2 H) −→ MI(B(H))x x
MI ⊗min B(H) MI(X)x x
Mfin
I ⊗min X −→ Mfin

I (X).

The complete isometry in the top row, restricts to a complete isom-
etry in the bottom row. Taking completions, and using 3.1.7, gives
(completely isometrically)

KI ⊗min X = Mfin
I ⊗min X ∼= Mfin

I (X) = KI(X).
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There is a ‘rectangular variant’ of (3.8): for any sets I, J we have

KI,J ⊗min X ∼= KI,J(X). (3.9)

To see this, suppose that I has a bigger cardinality than J (the con-
trary case is almost identical). Then we may regard KI,J ⊂ KI and
KI,J(X) ⊂ KI(X). By the injectivity of ⊗min we have a commutative
diagram

KI ⊗min X −→ KI(X)x x
KI,J ⊗min X −→ KI,J(X).

The complete isometry in the top row coming from (3.8), restricts to
a complete isometry in the bottom row, proving (3.9).

Similarly, it follows from the second last paragraph, and from the
fact that B((H1 ⊗2 H2) ⊗2 H3) ∼= B(H1 ⊗2 (H2 ⊗2 H3)), that ⊗min

is associative. That is,

(X1 ⊗min X2)⊗min X3 = X1 ⊗min (X2 ⊗min X3). (3.10)

To see this clearly, suppose that Xi ⊂ B(Hi), and consider the com-
mutative diagram

B((H1 ⊗2 H2)⊗2 H3) −→ B(H1 ⊗2 (H2 ⊗2 H3))x x
B(H1 ⊗2 H2)⊗min B(H3) B(H1)⊗min B(H2 ⊗2 H3)x x

(X1 ⊗min X2)⊗min X3 −→ X1 ⊗min (X2 ⊗min X3).

The vertical arrows are complete isometries by 3.1.6 and the ‘injectiv-
ity’ of ⊗min. The ∗-isomorphism in the top row, which is a complete
isometry, restricts to a complete isometry in the bottom row. Taking
completions, and using 3.1.7, gives (completely isometrically)

(X1⊗minX2)⊗minX3 = (X1 ⊗min X2)⊗min X3
∼= X1 ⊗min (X2 ⊗min X3),

which equals X1 ⊗min (X2 ⊗min X3). This proves the associativity.
Accordingly, the space in (3.10) will be merely denoted by X1 ⊗min

X2⊗minX3, and the proof above shows that it can be identified with
a subspace of B(H1 ⊗2 H2 ⊗2 H3). Similarly, one may consider the
N -fold minimal tensor product X1 ⊗min · · · ⊗min XN of any N -tuple
of operator spaces.
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Proposition 3.1.9. Let E,F be Banach spaces and let X be an
operator space.

(1) Min(E)⊗min X = E⊗̌X as Banach spaces.

(2) Min(E)⊗min Min(F ) = Min(E⊗̌F ) as operator spaces.

Proof. We have isometric embeddings Min(E)⊗minX ⊂ CB(X∗,Min(E))
and E⊗̌X ⊂ B(X∗, E) by (3.2) and the Banach space variant of (3.2).
However CB(X∗,Min(E)) = B(X∗, E) by (1.8). Thus both spaces in
(1) coincide isometrically with the same subspace of B(X∗, E), which
proves (1). The isometry in (2) follows from (1). Thus the complete
isometry in (2) will follow if Min(E) ⊗min Min(F ) is a minimal op-
erator space. To see this, suppose that E ⊂ C(K1) and F ⊂ C(K2)
isometrically. Then Min(E) ⊂ C(K1) and Min(F ) ⊂ C(K2) com-
pletely isometrically. So by the ‘injectivity’ of ⊗min, we have that
Min(E) ⊗min Min(F ) is contained inside C(K1) ⊗min C(K2) com-
pletely isometrically. However, we observed in 3.1.6 that the min-
imal tensor product of commutative C∗-algebras is a commutative
C∗-algebra, and hence is a C(K)-space, and is a ‘minimal operator
space’.

3.1.10 (Duality of Min and Max) We take the time to prove an
item stated earlier, namely: For any Banach space E, we have

Min(E)∗ = Max(E∗) and Max(E)∗ = Min(E∗), (3.11)

completely isometrically. To see this, note that an element inMn(Max(E)∗)
may be regarded as a map in CB(Max(E),Mn) by (1.6). By (1.10)
this is exactly the same as a map in B(E,Mn).

On the other hand, Mn(Min(E∗)) ∼= Mn⊗̌E∗ ∼= B(E,Mn) by
Proposition 3.1.9 and ??. That is, an element in Mn(Min(E∗))
may be regarded as a map in B(E,Mn). These identifications pre-
serve the norm, so that Mn(Max(E)∗) = Mn(Min(E∗)). That is,
Max(E)∗ = Min(E∗). Therefore also Max(E∗)∗ = Min(E∗∗). How-
ever we claim that Min(E∗∗) = Min(E)∗∗. This claim may be seen
by first proving it in the case that E = C(K), for compact K. The
claim follows in this case from 1.3.11, since the second dual of a
commutative C∗-algebra is a commutative C∗-algebra, and hence is a
minimal operator space. Next we use the fact that ‘minimal operator
spaces’ are completely isometric to subspaces of unital commutative
C∗-algebras, and the fact that the second dual of a complete isom-
etry is a complete isometry (see 1.3.3). Thus if Min(E) ⊂ C(K)
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completely isometrically, then dualizing this embedding we get a
commuting diagram

C(K)∗∗ −→ Min(C(K))∗∗x x
Min(E∗∗) −→ Min(E)∗∗

where all arrows except possibly the bottom one are complete isome-
tries. Hence the bottom one is a complete isometry, proving the
claim.

Finally, Max(E∗) and Min(E)∗ are two operator space structures
on E∗ with the same operator space dual, and therefore they are
completely isometric, by 1.3.1.

3.1.11 (Haagerup tensor product) Before we define this tensor
product, we introduce an intimately related class of bilinear maps.
Suppose that X, Y , and W are operator spaces, and that u : X ×
Y → W is a bilinear map. For n, p ∈ N, define a bilinear map
Mn,p(X)×Mp,n(Y )→Mn(W ) by

(x, y) 7−→
[ p∑
k=1

u(xik, ykj)
]
i,j
,

where x = [xij ] ∈Mn,p(X) and y = [yij ] ∈Mp,n(Y ). If p = n we write
this map as un. If the norms of these bilinear maps are uniformly
bounded over p, n ∈ N, then we say that u is completely bounded,
and write the supremum of these norms as ‖u‖cb. Sometimes this is
called completely bounded in the sense of Christensen and Sinclair.
It is easy to see (by adding rows and columns of zeroes to make
p = n) that ‖u‖cb = supn ‖un‖. (Indeed, if [xij ] ∈ Mn,p(X) and
[yij ] ∈Mp,n(Y ), and if m = max{n, p}, then

∥∥∥[ p∑
k=1

u(xik, ykj)
]∥∥∥

n
= ‖um([x′ij ], [y

′
ij ])‖m ≤ ‖um‖‖[xij ]‖‖[yij ]‖,

where [x′ij ] and [y′ij ] are m×m matrices obtained from [xij ] and [yij ]
by adding rows or columns of zeros.)

We say that u is completely contractive if ‖u‖cb ≤ 1. Completely
bounded multilinear maps of three variables have a similar definition
(involving the expression [

∑
k,l u(xik, ykl, zlj)]), and similarly for four
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or more variables. We remark that if v : X → B(H) and w : Y →
B(H) are completely bounded linear maps, then it is easy to see
that the bilinear map (x, y) 7→ v(x)w(y) is completely bounded in
the sense above, and has completely bounded norm dominated by
‖v‖cb‖w‖cb. Indeed, note that∥∥∥[ n∑

k=1

v(xik)w(ykj)
]∥∥∥

n
≤ ‖[v(xij)]‖n‖[w(yij)]‖n ≤ ‖v‖cb‖w‖cb‖[xij ]‖n‖[yij ]‖n,

if [xij ] ∈ Mn(X) and [yij ] ∈ Mn(Y ), since Mn(B(H)) is a Banach
algebra.

Let X,Y be operator spaces. For n ∈ N and z ∈Mn(X ⊗ Y ) we
define

‖z‖h = inf{‖x‖‖y‖}, (3.12)

where the infimum is taken over all p ∈ N, and all ways to write
z = x� y, where x ∈Mn,p(X), y ∈Mp,n(Y ). Here x� y denotes the
formal matrix product of x and y using the ⊗ sign as multiplication:
namely x�y = [

∑p
k=1 xik⊗ykj ]. To make sense of this, we first note

that any z ∈Mn(X⊗Y ) can be written as such a x�y. To see this we
observe that this is clearly true if z has only one nonzero entry. For
example, if this entry were the 1-2 entry, and if z12 =

∑p
k=1 xk ⊗ yk,

then z = x� y where x ∈Mnp(X) has first row consisting of the xk
and zeros elsewhere, and y ∈ Mpn(Y ) has second column consisting
of the yk and zeros elsewhere. Next note that

x� y + x′ � y′ = [x : x′]�
[
y
y′

]
,

for matrices x, x′, y, y′ of appropriate sizes. Similarly for a sum of
any (finite) number of terms of the form x � y. Thus by writing
z ∈Mn(X ⊗ Y ) as a sum of n2 matrices, each of which has only one
nonzero entry, and using the facts above, we do indeed have z = x�y
as desired.

It is clear that ‖λz‖h = |λ|‖z‖h if λ ∈ C. Next note that the last
centered equation actually shows that ‖z + z′‖h ≤ ‖z‖h + ‖z′‖h for
z, z′ ∈Mn(X⊗Y ). For suppose that z = x�y and z′ = x′�y′, with
‖x‖‖y‖ < ‖z‖h + ε and ‖x′‖‖y′‖ < ‖z′‖h + ε. By the trick of writing
x� y = tx� 1

t y with t =
√
‖y‖/‖x‖, we can assume that ‖y‖ = ‖x‖.

Similarly, assume that ‖y′‖ = ‖x′‖. Then

‖z + z′‖h ≤ ‖[x : x′]‖
∥∥∥ [ y

y′

] ∥∥∥ ≤√‖x‖2 + ‖x′‖2
√
‖y‖2 + ‖y′‖2,
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the last ≤ following from the C∗-identity used four times. For exam-
ple,

‖[x : x′]‖2 = ‖xx∗ + x′x′∗‖ ≤ ‖xx∗‖+ ‖x′x′∗‖ = ‖x‖2 + ‖x′‖2.

Thus

‖z + z′‖h ≤ ‖x‖‖y‖+ ‖x′‖‖y′‖ ≤ ‖z‖h + ‖z′‖h + 2ε.

Now let ε→ 0, to see that ‖ · ‖h is a seminorm.

Suppose that u : X×Y →W is a bilinear map which is completely
contractive in the sense above. Let ũ : X⊗Y →W be the canonically
associated linear map. For z ∈ Mn(X ⊗ Y ), if z = x � y as above,
then

‖ũn(z)‖n =
∥∥∥[ p∑

k=1

u(xik, ykj)
]
≤ ‖x‖‖y‖.

Taking the infimum over x, y with z = x�y, we see by the definition
of ‖ · ‖h that

‖ũn(z)‖ ≤ ‖z‖h, (3.13)

where the latter quantity is as defined in (3.12). If ϕ and ψ are
contractive functionals on X and Y respectively, then using 1.2.7
and the fact at the end of the second paragraph of 3.1.11, we see
that the bilinear map (x, y) 7→ ϕ(x)ψ(y) is completely contractive.
Thus from (3.13) we see that

∣∣∣ p∑
k=1

ϕ(xk)ψ(yk)
∣∣∣ ≤ ‖z‖h , z =

p∑
k=1

xk ⊗ yk.

By the definition of the Banach space injective tensor norm of z (see
3.2.2 in the C∗-course), we deduce that the latter norm of an element
z ∈ X ⊗ Y is dominated by ‖z‖h. Hence indeed ‖ · ‖h is a norm.

Proposition 3.1.12. If X and Y are operator spaces, then the com-
pletion X ⊗h Y of X ⊗ Y with respect to ‖ · ‖h is an operator space.

Proof. We use Ruan’s theorem, in the form of Exercise (6) to Section
2.1. To see (R1)’, suppose that α ∈Mm,n, β ∈Mn,m, z ∈Mn(X⊗Y )
with z = x� y as above. Then αzβ = (αx)� (yβ), and so

‖αzβ‖h ≤ ‖αx‖‖yβ‖ ≤ ‖α‖‖x‖‖y‖‖β‖.
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Taking the infimum over x, y with z = x� y, we see by definition of
‖ · ‖h that

‖αzβ‖h ≤ ‖α‖‖β‖‖z‖h.

For (R2)’, let z′ = x′ � y′ ∈Mp(X ⊗ Y ), then z⊕ z′ = (x⊕ x′)�
(y ⊕ y′), and

‖z ⊕ z′‖h ≤ ‖x⊕ x′‖‖y ⊕ y′‖ = max{‖x‖, ‖x′‖}max{‖y‖, ‖y′‖}.

As in the proof that ‖ · ‖h is a norm, we can assume that ‖x‖ = ‖y‖
and ‖x′‖ = ‖y′‖. Then ‖z ⊕ z′‖h ≤ max{‖x‖‖y‖, ‖x′‖‖y′‖}, and
taking the infimum over such x, x′, y, y′ gives (R2)’. Note that (R1)’
and (R2)’ pass to the completion of X⊗Y . So X⊗hY is an operator
space.

This operator space X ⊗h Y is called the Haagerup tensor prod-
uct. Note that the canonical bilinear map ⊗ : X × Y → X ⊗h Y is
completely contractive in the sense above.

Using (3.13) we see that if u : X × Y → W is a bilinear map
with associated linear map ũ : X ⊗ Y → W , then u is completely
bounded if and only if ũ extends to a completely bounded linear
map on X ⊗h Y . Moreover we have

‖u‖cb =
∥∥ũ : X ⊗h Y −→W

∥∥
cb

in that case. The above property means that the Haagerup tensor
product linearizes completely bounded bilinear maps. A moments
thought shows that this is a universal property. That is, suppose that
(W,µ) is a pair consisting of an operator space W , and a completely
contractive bilinear map µ : X × Y → W , such that the span of the
range of µ is dense in W , and which possesses the following property:

Given any operator space Z and given any completely bounded
bilinear map u : X × Y → Z, then there exists a linear completely
bounded ũ : W → Z such that ũ(µ(x, y)) = u(x, y) for all x ∈
X, y ∈ Y , and such that ‖ũ‖cb ≤ ‖u‖cb.

Then X ⊗h Y ∼= W via a complete isometry v satisfying v ◦ ⊗ = µ.

We leave it to the reader to check the above assertions as an
exercise.

3.1.13 (More properties of the Haagerup tensor product)



62 CHAPTER 3. LECTURE 3

• Since X⊗hY is an (uncompleted) operator space, there is a canon-
ical norm on Mm,n(X ⊗h Y ), via viewing this space as a subspace
of Mr(X ⊗h Y ), for r = max{m,n}. It is easy to see that for
z ∈ Mm,n(X ⊗h Y ), this canonical norm is still given by the for-
mula (3.12), however with x ∈Mm,p(X), y ∈Mp,n(Y ) there. There
is a canonical linear isomorphism between Cm(X) ⊗ Rn(Y ) and
Mm,n(X ⊗ Y ), taking [xi] ⊗ [yi] → [xi ⊗ yj ](i,j). Using the defini-
tion (3.12) it is a very easy exercise to show that this isomorphism
is actually an isometry Cm(X)⊗h Rn(Y ) ∼= Mm,n(X ⊗h Y ). Pass-
ing to the completion, we have Cm(X)⊗hRn(Y ) ∼= Mm,n(X⊗hY )
isometrically.

• This tensor product is functorial. That is, if ui : Xi → Yi are
completely bounded maps between operator spaces, then u1⊗u2 :
X1 ⊗h X2 → Y1 ⊗h Y2 is completely bounded, and ‖u1 ⊗ u2‖cb ≤
‖u1‖cb ‖u2‖cb. Indeed, if z = x � y ∈ Mn(X1 ⊗ X2), then (u1 ⊗
u2)n(z) = (u1)n(x)� (u2)n(y), and so

‖(u1 ⊗ u2)n(z)‖h ≤ ‖(u1)n(x)‖‖(u2)n(y)‖ ≤ ‖u1‖cb ‖u2‖cb‖x‖‖y‖.

Taking the infimum over such x, y with z = x� y gives

‖(u1 ⊗ u2)n(z)‖h ≤ ‖u1‖cb ‖u2‖cb‖z‖h.

Thus u1 ⊗ u2 is continuous on X1 ⊗h X2, and extends uniquely
to u1 ⊗ u2 : X1 ⊗h X2 → Y1 ⊗h Y2 satisfying ‖u1 ⊗ u2‖cb ≤
‖u1‖cb ‖u2‖cb.

• The Haagerup tensor product is projective, that is, if u1 and u2

in the last item are complete quotient maps, then so is u1 ⊗ u2.
To see this, note that by the functoriality, the map u1 ⊗ u2 is
a complete contraction. Let z ∈ Mn(Y1 ⊗ Y2), with ‖z‖h < 1.
By definition, we may write z = y1 � y2, where y1 ∈ Mn,p(Y1),
y2 ∈ Mp,n(Y2) both have norm < 1. Then y1 = (u1)n,p(x1) and
y2 = (u2)p,n(x2) for x1 ∈ Mn,p(X1), x2 ∈ Mp,n(X2), both of norm
< 1. Let w = x1 � x2 ∈ Mn(X1 ⊗h X2), this matrix has norm
< 1, and (u1⊗u2)n(w) = z. By an obvious density argument, this
shows that u1 ⊗ u2 above is a complete quotient map.

• The Haagerup tensor product is not commutative. That is, in
general X ⊗h Y and Y ⊗hX are not isometric. We shall see some
examples of this later.

• The Haagerup tensor product is associative. That is,

(X1 ⊗h X2)⊗h X3
∼= X1 ⊗h (X2 ⊗h X3)
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completely isometrically. To see this, we first show it for the un-
completed Haagerup tensor product, where there is an obvious al-
gebraic linear isomorphism ρ : (X1⊗X2)⊗X3 → X1⊗ (X2⊗X3).
If z ∈ Mn((X1 ⊗h X2) ⊗ X3) with ‖z‖h < 1 then z = u � w,
where u ∈ Mn,p(X1 ⊗h X2) and w ∈ Mp,n(X3), both of norm
< 1. By the first few lines in 3.1.13, we have u = x � y for
some x ∈ Mn,k(X), y ∈ Mk,p(Y ), both of norm < 1. But then
ρn(z) = x� (y� z), and hence it is easy to see that ‖ρn(z)‖h < 1.
So ρ is a complete contraction, and similarly ρ−1 is a complete
contraction. So ρ is a complete isometry. Taking the completion,
just as in the proof of the associativity of ⊗min, gives the asso-
ciativity of ⊗h. Accordingly, the three-fold tensor product in the
last displayed equation will be merely denoted by X1⊗hX2⊗hX3.
The induced norms on Mn(X1 ⊗ X2 ⊗ X3) may be described by
the ‘3-variable’ version of (3.12). From this one may see that
X1 ⊗h X2 ⊗h X3 has the universal property of ‘linearizing’ com-
pletely bounded trilinear maps (see discussion at the end of 3.1.11).
Similar assertions clearly hold for the N -fold Haagerup tensor
product X1 ⊗h · · · ⊗h XN of any N -tuple of operator spaces.

• There are convenient norm expressions for ‖ · ‖h. Suppose that
A and B are C∗-algebras. If X and Y are subspaces of A and B
respectively, and if z ∈ X⊗Y , then to say that z = x�y, is simply
to say that z =

∑p
k=1 ak ⊗ bk, where ak is the kth entry in the

‘row matrix’ x, and bk is the kth entry in the ‘column matrix’ y.
By the C∗-identity,

‖x‖2 = ‖xx∗‖ =
∥∥∥ p∑
k=1

aka
∗
k

∥∥∥.
Similarly, ‖y‖2 =

∥∥∥∑p
k=1 b

∗
kbk

∥∥∥. Thus by the definition in 3.1.11

we have

‖z‖h = inf
∥∥∥ p∑
k=1

aka
∗
k

∥∥∥ 1
2
∥∥∥ p∑
k=1

b∗kbk

∥∥∥ 1
2

(3.14)

where the infimum is taken over all ways to write z =
∑p

k=1 ak⊗bk
in X ⊗ Y .

The following shows that the last formula extends to the com-
pleted Haagerup tensor product X⊗h Y , replacing p by∞ in (3.14).

Proposition 3.1.14.
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(1) If z ∈ X ⊗h Y with ‖z‖h < 1 then we may write z as a norm
convergent sum

∑∞
k=1 ak⊗ bk in X⊗h Y , with ‖

∑∞
k=1 aka

∗
k‖ < 1

and ‖
∑∞

k=1 b
∗
kbk‖ < 1, and where the last two sums converge in

norm. That is, [a1 a2 · · · ] ∈ R(X) and [b1 b2 · · · ]t ∈ C(Y ).

(2) If x = [a1 a2 · · · ] ∈ R(X) and y = [b1 b2 · · · ]t ∈ Cw(Y ), that
is if

∑∞
k=1 aka

∗
k converges in norm and if the partial sums of∑∞

k=1 b
∗
kbk are uniformly bounded in norm, then

∑∞
k=1 ak ⊗ bk

converges in norm in X ⊗h Y . Similarly if x ∈ Rw(X) and
y ∈ C(Y ).

Proof. (1) If z is as stated, choose w1 ∈ X ⊗ Y with ‖z −w1‖h < ε
2

and ‖w1‖h < 1. By (3.14) we may write w1 =
∑n1

k=1 xk ⊗ yk with∑
k xkx

∗
k ≤ 1 and

∑
k y
∗
kyk ≤ 1. Repeating this argument, we may

choose w2 ∈ X ⊗ Y with ‖z − w1 − w2‖h < ε
22

, and ‖w2‖h < ε
2 .

By (3.14) we write w2 =
∑n2

k=n1+1 xk ⊗ yk with
∑

k xkx
∗
k ≤

ε
2 and∑

k y
∗
kyk ≤

ε
2 . Continuing so, we obtain for every m ∈ N a finite rank

tensor wm =
∑nm

k=nm−1+1 xk ⊗ yk with ‖z − w1 − . . . − wm‖ < ε
2m ,∑nm

k=nm−1+1 xkx
∗
k ≤

ε
2m−1 , and

∑nm
k=nm−1+1 y

∗
kyk ≤

ε
2m−1 . Now it is

clear that the partial sums of
∑∞

k=1 xkx
∗
k and

∑∞
k=1 y

∗
kyk are Cauchy.

For example, for any j > i ≥ nm−1 + 1 we have

‖
j∑
k=i

xkx
∗
k‖ ≤ ‖

∞∑
k=nm−1+1

xkx
∗
k‖ ≤

∞∑
k=m−1

ε

2k
=

ε

2m
→ 0

with m. Hence
∑∞

k=1 xkx
∗
k and

∑∞
k=1 y

∗
kyk converge in norm to ele-

ments with norm ≤ 1 + ε. Also, the partial sums of
∑∞

k=1 xk ⊗ yk
are Cauchy, so that that sum converges in norm (see (2) below).
Since a subsequence of these partial sums converges to z, by the first
displayed equation in the proof, we have z =

∑∞
k=1 xk⊗yk as desired.

(2) To see that the partial sums of
∑∞

k=1 ak⊗bk are Cauchy, note

that from (3.14) we have ‖
∑m

k=n ak⊗bk‖h ≤ ‖
∑m

k=n aka
∗
k‖

1
2 ‖
∑m

k=n b
∗
kbk‖

1
2 .

Now use the fact that the partial sums of
∑∞

k=1 aka
∗
k are Cauchy.

The Haagerup tensor product is injective (Theorem 3.1.15 below).
In order to establish this, we will need a simple linear algebraic fact
about tensors z ∈ E ⊗F . Suppose that X is a closed subspace of E,
with z ∈ X ⊗ F ⊂ E ⊗ F , and suppose also that z =

∑n
k=1 xk ⊗ yk,

with {yk} a linearly independent subset of F . Then we claim that
xk ∈ X for all k = 1, · · · , n. To prove this, choose by the Hahn-
Banach theorem functionals ϕk ∈ F ∗ with ϕk(yi) = δi,k, Kronecker’s
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delta. Then (IE ⊗ ϕk)(z) = xk. However, since z ∈ X ⊗ Y we must
have (IE ⊗ ϕk)(z) ∈ X. So xk ∈ X.

Theorem 3.1.15. If ui : Xi → Yi are completely isometric maps
between operator spaces, then u1 ⊗ u2 : X1 ⊗h X2 → Y1 ⊗h Y2 is a
complete isometry.

Proof. We may assume that Xi ⊂ Yi, and ui is the inclusion. By a
two-step argument, as in the proof of the injectivity of ⊗min, we can
assume that X2 = Y2, and u2 is the identity map. Also, it is enough
to prove the result for the uncompleted tensor products. Of course
u1⊗u2 is a complete contraction, by the functoriality of ⊗h. To prove
that u1 ⊗ u2 is an isometry, it suffices to show that if z ∈ X1 ⊗X2,
and that if z viewed as an element of Y1 ⊗ Y2 has Haagerup norm
< 1, then z ∈ Ball(X1⊗hX2). Thus suppose that z ∈ X1⊗X2, with
z = x � y =

∑n
k=1 xk ⊗ yk, where x = [xk] ∈ Rn(Y1), y = [yk] ∈

Cn(X2), with ‖x‖‖y‖ < 1. If {bk} ⊂ {yk} is a basis for Span{yk},
and if b = [bk] ∈ Cm(X2), then there is a matrix β of scalars with
y = βb. One can in fact choose β so that its first few rows form a
copy of the identity matrix. Let β = uα be a polar decomposition
of β, where α = (β∗β)

1
2 , and u is an isometry. In fact, it is a simple

linear algebraic exercise to see that β∗β ≥ I, so that α is invertible.
Then z = x� y = xu� αb, and

‖xu‖‖αb‖ ≤ ‖x‖‖u∗uαb‖ = ‖x‖‖u∗y‖ < 1.

Since α is invertible, the entries of αb are linearly independent.
By the fact above the theorem, xu ∈ Rm(X1). Thus indeed z ∈
Ball(X1 ⊗h X2).

Finally, to see that u1 ⊗ I is a complete isometry, we note that
by the last paragraph we have that Cn(X1)⊗h Rn(X2) ⊂ Cn(Y1)⊗h

Rn(X2) isometrically. By the last part of the first ‘bullet’ in 3.1.13,
we conclude that Mn(X1⊗hX2) ⊂Mn(Y1⊗hX2) isometrically. That
is, (u1⊗I)n is an isometry, so that u1⊗I is a complete isometry.

3.1.16 (Operator space projective tensor product) As with the
Haagerup tensor product, it is convenient to first define an intimately
related class of bilinear maps. Suppose that X, Y , and W are oper-
ator spaces and that u : X × Y →W is a bilinear map. We say that
u is jointly completely bounded if there exists a constant K ≥ 0 such
that

‖[u(xij , ykl)](i,k),(j,l)‖ ≤ K‖[xij ]‖‖[ykl]‖
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for all m,n and [xij ] ∈ Mn(X), and [ykl] ∈ Mm(Y ). Here, as usual,
the matrix is indexed on rows by i and k, and on columns by j and
l. The least such K is written as ‖u‖jcb. We say that u is jointly
completely contractive if ‖u‖jcb ≤ 1. Jointly completely bounded
multilinear maps of three or more variables are defined similarly.
Any completely contractive (in the sense of 3.1.11) bilinear map u
is jointly completely contractive. This is immediate from the simple
relation [u(xij , ykl)] = unm([xij ] ⊗ Im, In ⊗ [ykl]), where umn is as
defined at the start of 3.1.11. Indeed, for [xij ] ∈Mn(X), and [ykl] ∈
Mm(Y ) we have

‖[u(xij , ykl)]‖ = ‖unm([xij ]⊗Im, In⊗[ykl])‖ ≤ ‖[xij ]⊗Im‖‖In⊗[ykl]‖ = ‖[xij ]‖‖[ykl]‖.

Conceptually, perhaps the simplest way to define the operator

space projective tensor product X
_
⊗ Y of two operator spaces X

and Y , is to identify it (completely isometrically) with a subspace
of CB(X,Y ∗)∗, via the map θ that takes x ⊗ y to the functional
T 7→ T (x)(y) on CB(X,Y ∗). This gives X ⊗ Y an (incomplete)
operator space structure, and the completion is an operator space
completely isometric to a subspace of CB(X,Y ∗)∗. One then can
immediately verify results like (3.16), (3.17), and (3.18) below. This
was the approach taken in [8], and the reader might like to try these
as an exercise. However this approach does not yield the following
explicit ‘internal formula’ for the tensor norm: For z ∈ Mn(X ⊗ Y )
and n ∈ N, define

‖z‖_ = inf{‖α‖‖x‖‖y‖‖β‖}, (3.15)

the infimum taken over p, q ∈ N, and all ways to write z = α(x⊗y)β,
where α ∈ Mn,pq, x ∈ Mp(X), y ∈ Mq(Y ), and β ∈ Mpq,n. Here we
wrote x⊗y for the ‘tensor product of matrices’, namely x⊗y = [xij⊗
ykl](i,k),(j,l), indexed on rows by i and k, and on columns by j and l.
Suppose that z ∈Mn(X⊗Y ), and that we have a jointly completely
contractive bilinear map u : X × Y → W . Let ũ : X ⊗ Y → W be
the associated linear map. Write z = α(x⊗ y)β as above. A simple
calculation shows that

‖ũn(z)‖ = ‖α[u(xij , ykl)]β‖ ≤ ‖α‖‖[u(xij , ykl)]‖‖β‖ ≤ ‖α‖‖[xij ]‖‖[ykl]‖‖β‖.

Taking the infimum over such ways to write z, we see from the defi-
nitions that

‖ũn(z)‖ ≤ ‖z‖_ . (3.16)
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From the observation at the end of the first paragraph of 3.1.16, it
follows that this is also true if u is completely contractive. Taking
u = ⊗ : X × Y → X ⊗h Y , in which case ũ is the identity map, we
deduce from (3.16) that ‖z‖h ≤ ‖z‖_.

We leave it as an exercise similar to the analogous statement
for the Haagerup tensor product (or see [17]), that the quantities in
(3.15) define an operator space structure on X⊗Y (to see that these
are norms as opposed to seminorms, use the fact at the end of the
last paragraph). Thus the completion of X⊗Y with respect to these
matrix norms is an operator space, which we call the operator space

projective tensor product, and write as X
_
⊗ Y .

By (3.16) we see that if u : X × Y → W is a bilinear map with
associated linear map ũ : X ⊗ Y → W , and if u is jointly com-
pletely contractive, then ũ is completely contractive with respect

to ‖ · ‖_, and extends further to a complete contraction ũ : X
_
⊗

Y → W . Conversely, if v : X
_
⊗ Y → W is completely contrac-

tive, and if u : X × Y → W is the associated bilinear map, then u
is jointly completely contractive. To see this, note that if [xij ] ∈
Ball(Mn(X)), [ykl] ∈ Ball(Mm(Y )), then [xij⊗ykl] ∈ Ball(Mmn(X

_
⊗

Y )) (take α = β = Imn in (3.15)). Thus

‖[u(xij , ykl)]‖ = ‖vmn([xij ⊗ ykl])‖ ≤ 1.

Writing JCB(X,Y ;W ) for the space of jointly completely bounded

maps, we have shown that JCB(X,Y ;W ) ∼= CB(X
_
⊗ Y,W ) isomet-

rically, via the canonical map. In other words, the operator space
projective tensor product linearizes jointly completely bounded bilin-
ear maps. As for the Haagerup tensor product this is a universal

property, and characterizes X
_
⊗ Y uniquely up to complete isome-

try.

If u : X × Y → W is bilinear and jointly completely bounded,
write u# for the map from X to the set of functions from Y to W
defined by

u#(x)(y) = u(x, y), x ∈ X, y ∈ Y.



68 CHAPTER 3. LECTURE 3

Then u# ∈ CB(X,CB(Y,W )): indeed,

‖u#‖cb = sup{‖[u#(xij)]‖ : [xij ] ∈ Ball(Mn(X)), n ∈ N}
= sup{‖[u#(xij)(ykl)]‖ : [xij ] ∈ Ball(Mn(X)), [ykl] ∈ Ball(Mm(Y ))}
= sup{‖[u(xij , ykl)]‖ : [xij ] ∈ Ball(Mn(X)), [ykl] ∈ Ball(Mm(Y ))}
= ‖u‖jcb.

Conversely, if v ∈ CB(X,CB(Y,W )) and if u(x, y) = v(x)(y), then
reversing the last argument shows that u is jointly completely bounded.
Indeed, we have shown that CB(X,CB(Y,W )) ∼= JCB(X,Y ;W ) ∼=
CB(X

_
⊗ Y,W ) isometrically via the canonical map. In fact this is a

complete isometry, as may be seen by the common trick of replacing

W by Mn(W ) in the isometric identity, thus CB(X
_
⊗ Y,Mn(W )) ∼=

CB(X,CB(Y,Mn(W )). Using (1.5) we then have a string of isome-
tries

Mn(CB(X
_
⊗ Y,W )) ∼= CB(X

_
⊗ Y,Mn(W )) ∼= CB(X,CB(Y,Mn(W )))

∼= CB(X,Mn(CB(Y,W ))) ∼= Mn(CB(X,CB(Y,W ))).

The isometry which is the composition of all these isometries is easily

seen to just be the nth amplification of the map CB(X
_
⊗ Y,W ) →

CB(X,CB(Y,W )) above, and hence the latter is a complete isome-
try. A similar argument works for CB(Y,CB(X,W )), and thus we
have

CB(X
_
⊗ Y,W ) ∼= CB(X,CB(Y,W )) ∼= CB(Y,CB(X,W )) (3.17)

completely isometrically. In particular,

(X
_
⊗ Y )∗ ∼= CB(X,Y ∗) ∼= CB(Y,X∗) completely isometrically.

(3.18)

Corollary 3.1.17. For any operator spacesX,Y , the space CB(X,Y ∗)

is a dual operator space, with predual X
_
⊗ Y .

We now list a sequence of properties of the operator space projective
tensor product. We leave it as an exercise, copying the analoguous

proofs in 3.1.13, that
_
⊗ is functorial, and projective. We use these

words in the sense that we have used them for the other two tensor
products. We show next that

_
⊗ is commutative, that is, X

_
⊗ Y ∼=
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Y
_
⊗ X completely isometrically. To see this we will use Exercise (9)

to Section 2.1. Indeed if θ : X⊗Y → Y ⊗X, then it is easy to check

that the map ϕ 7→ ϕ ◦ θ on (Y
_
⊗ X)∗ is exactly the composition of

the complete isometries in the sequence

(Y
_
⊗ X)∗ ∼= CB(X,Y ∗) ∼= (X

_
⊗ Y )∗

provided by (3.18).

To show that
_
⊗ is associative, that is, (X

_
⊗ Y )

_
⊗ Z ∼= X

_
⊗ (Y

_
⊗

Z) completely isometrically, two methods come to mind. First, one
could show that each of these two spaces has the universal property
of linearizing jointly completely bounded trilinear maps, and hence
they must be the same. A second method is to mimic the proof just
given for commutativity, since these spaces have the same duals:

((X
_
⊗ Y )

_
⊗ Z)∗ ∼= CB(X

_
⊗ Y,Z∗) ∼= CB(X,CB(Y,Z∗)),

and

(X
_
⊗ (Y

_
⊗ Z))∗ ∼= CB(X, (Y

_
⊗ Z)∗) ∼= CB(X,CB(Y, Z∗)),

using (3.17) several times.

3.1.18 (Properties of ⊗̂) The Banach space projective tensor prod-

uct X⊗̂Y can be defined just as we defined
_
⊗, but in the Ba-

nach category. Thus identify X⊗̂Y (isometrically) with a subspace
of B(X,Y ∗)∗, via the map θ that takes x ⊗ y to the functional
T 7→ T (x)(y) on B(X,Y ∗). This gives X⊗Y an (incomplete) opera-
tor space structure, and the completion is X⊗̂Y . It is the ‘linearizer’
of bounded bilinear functions f : X×Y → Z. Simpler versions of all
the computations above give the analogous properties for ⊗̂ (which
are well known). For example, (X ⊗̂Y )∗ ∼= B(Y,X∗) ∼= B(X,Y ∗)
isometrically, for Banach spaces X and Y .

Proposition 3.1.19. Let E,F be Banach spaces and let Y be an
operator space.

(1) Max(E)
_
⊗ Y = E⊗̂Y isometrically.

(2) Max(E⊗̂F ) = Max(E)
_
⊗ Max(F ) completely isometrically.
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Proof. The first item follows as in the proof of the commutativity of
_
⊗ above, by computing the duals of these two tensor products, using
(3.18), (1.10), and the Banach variant of (3.18):

(Max(E)
_
⊗ Y )∗ ∼= CB(Max(E), Y ∗) = B(E, Y ∗) ∼= (E⊗̂Y )∗.

Then (2) follows from (1) if we can show that Max(E)
_
⊗ Max(F ) is

a maximal operator space, or equivalently that any contractive map
on it is completely contractive. To do this, observe that

B(Max(E)
_
⊗ Max(F ),W ) = B(E⊗̂F,W ) = B(E,B(F,W )),

isometrically for any operator space W , using (1). The latter space
equals

CB(Max(E), CB(Max(F ),W )) = CB(Max(E)
_
⊗ Max(F ),W )

by (1.10) and (3.17). Thus Max(E)
_
⊗ Max(F ) is ‘maximal’.

Proposition 3.1.20. (Comparison of tensor norms) If X and Y are
operator spaces then the various tensor norms on X ⊗Y are ordered
as follows:

‖ · ‖∨ ≤ ‖ · ‖min ≤ ‖ · ‖h ≤ ‖ · ‖_ ≤ ‖ · ‖∧.

Indeed the ‘identity’ is a complete contraction X
_
⊗ Y → X ⊗h Y →

X ⊗min Y .

Proof. The first inequality follows easily for example from (3.5) and
the definition of ⊗̌ in the C∗-course. The fact that ‖ · ‖_ ≤ ‖ · ‖∧
follows from the universal property of ⊗̂ in the C∗-course. Indeed,

since the bilinear map ⊗ : X × Y → X
_
⊗ Y is jointly completely

contractive, and hence contractive, it induces a contractionX⊗∧Y →
X

_
⊗ Y . We saw in 3.1.16 the complete contraction X

_
⊗ Y → X ⊗h

Y . For the remaining relation, consider unital C∗-algebras A and
B containing X and Y respectively, and the following commutative
diagram of uncompleted tensor products

A⊗h B −→ A⊗min Bx x
X ⊗h Y −→ X ⊗min Y,
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where the horizontal arrows are the identity map, and the vertical ar-
rows are complete isometries by the injectivity of these tensor norms.
Thus the bottom arrow will be a complete contraction if the top one
is. Now A⊗minB is a C∗-algebra as observed in 3.1.6. Moreover the
maps

π : A→ A⊗min B : a→ a⊗ 1 , ρ : B → A⊗min B : b→ 1⊗ b

are (completely contractive) ∗-homomorphisms. The bilinear map
(a, b) 7→ π(a)ρ(b) = a⊗ b from A×B to A⊗min B is therefore com-
pletely contractive in the sense of 3.1.11. By the universal property
of ⊗h, this bilinear map induces a linear complete contraction from
A⊗hB to A⊗min B. But the latter map is clearly the identity map,
which proves the desired relation.

Proposition 3.1.21. If X,Y are operator spaces, if H,K are Hilbert
spaces, and if m,n ∈ N, then we have the following complete isome-
tries:

(1) Hr ⊗h X = Hr
_
⊗X, and X ⊗h Hc = X

_
⊗ Hc.

(2) Hc ⊗h X = Hc ⊗min X, and X ⊗h Hr = X ⊗min H
r.

(3) Cn(X) ∼= Cn ⊗h X = Cn ⊗min X, and Rn(X) ∼= X ⊗h Rn =
X ⊗min Rn.

(4) (H̄r
_
⊗ X

_
⊗ Kc)∗ = (H̄r ⊗h X ⊗h Kc)∗ ∼= CB(X,B(K,H)).

(5) S∞(K,H) ∼= Hc⊗min K̄
r and S∞(K,H)⊗minX ∼= Hc⊗hX⊗h

K̄r.

(6) Mm,n(X) ∼= Cm ⊗h X ⊗h Rn.

(7) Mm,n(X ⊗h Y ) ∼= Cm(X)⊗h Rn(Y ).

(8) Hc
_
⊗ Kc = Hc⊗hKc = Hc⊗minK

c = (H⊗2K)c, and similarly
for row Hilbert spaces.

(9) S1(K,H) ∼= K̄r
_
⊗ Hc.

(10) CB(S1(`2I , `
2
J), X) ∼= MI,J(X), if I, J are sets.

Proof. We will prove (1) last, although we use it to prove some of the
others. To prove (3), note that by (3.9) we have Cn⊗minX ∼= Cn(X).
By the last proposition there is a complete contraction Cn ⊗h X →
Cn ⊗min X ∼= Cn(X). The inverse of the latter map is the map

u : Cn(X) → Cn ⊗h X defined by u(
→
x) =

∑n
k=1

→
ek ⊗ xk, where

→
x = [xk] ∈ Cn(X). By definition of the Haagerup tensor norm,
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namely (3.12), we have∥∥∥ n∑
k=1

→
ek ⊗ xk

∥∥∥
h
≤ ‖In‖‖

→
x‖ = ‖→x‖.

Thus u is a contraction, and a similar argument at the matrix level
shows that it is a complete contraction. Thus Cn ⊗hX ∼= Cn(X). A
similar argument proves the other relation in (3).

It suffices to prove (2) for the uncompleted tensor products:
Hc ⊗h X = Hc ⊗min X. Let us examine the norm on both sides.
If z =

∑m
k=1 ζk ⊗ xk ∈ Hc ⊗ X, let K = Span({ζk}) ⊂ Hc. By

the injectivity of ⊗h (resp. ⊗min) the norm ‖z‖h (resp. ‖z‖min) is the
same whether computed in K⊗X or in Hc⊗X. Thus we can assume
that H is finite dimensional. A similar argument lets us make this
same assumption if z ∈ Mn(Hc ⊗ X). Now K is a Hilbert column
space, and is isometrically, and hence completely isometrically by
(1.12), isomorphic to Cn for some n ∈ N. By (3), we have

K ⊗h X ∼= Cn ⊗h X ∼= Cn ⊗min X ∼= K ⊗min X.

It is clear from the above discussion that we now have proved (2).
The first equality in (4) is clear from (1), and the rest is clear

from the complete isometries

(H̄r
_
⊗ X

_
⊗ Kc)∗ ∼= CB(X

_
⊗ Kc, Hc) ∼= CB(X,CB(Kc, Hc)),

which equals CB(X,B(K,H)). Here we have used (3.18), (3.17),
(1.13), and (1.12).

For the first equality in (5), note that the canonical map X⊗Y →
B(Y ∗, X) has range which is precisely the set of finite rank operators.
Thus the canonical complete isometry

Hc ⊗min K̄
r → CB((K̄r)∗, Hc) ∼= CB(Kc, Hc) = B(K,H)

has range that is the closure of the set of finite rank operators (we
have used (3.2), (1.13), and (1.12) here). But this closure in B(K,H)
is S∞(K,H). For the second equality, note that S∞(K,H)⊗minX =
Hc ⊗min X ⊗min K̄

r by commutativity of ⊗min and the first part of
(5), and so the second part of (5) follows from (2).

Item (6) follows from (5) and (3.9), and (7) follows from (6) by
(3) and the associativity of the Haagerup tensor product:

Cm(X)⊗h Rn(Y ) ∼= Cm ⊗h (X ⊗h Y )⊗h Rn ∼= Mm,n(X ⊗h Y ).
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The middle equality in (8) follows from (2), and the first equality
from (1). Writing Hc = CJ and K̄r = RI for sets I, J , we have
H ⊗2 K = `2(I × J), so that (H ⊗2 K)c = CI×J . Then the last
equality in (8) may be seen from (3.9):

Hc ⊗min K
c = CI ⊗min CJ = CI(CJ) = CI×J .

To see (9) note that (K̄r
_
⊗ Hc)∗ ∼= CB(Hc,Kc) = B(H,K) (as

in the proof of (4), for example). Thus K̄r
_
⊗ Hc is the unique

predual S1(K,H) of B(H,K). Lastly, for (10), CB(S1(`2I , `
2
J), X) is

completely isometric to

CB(RI
_
⊗ CJ , X) ∼= CB(CJ , CB(RI , X)) ∼= RwJ (CwI (X)) ∼= MI,J(X),

using (9), (3.17), 1.2.25 twice, and 1.2.23 (8).
Finally, for (1), there is a direct proof in [17], for example, but we

give an indirect one. We prove that X ⊗h Hc = X
_
⊗ Hc completely

isometrically, the other relation being similar. Clearly it suffices, by

Proposition 3.1.20, to show that I : X ⊗h Hc → X
_
⊗ Hc is com-

pletely contractive. This will follow if we can show that any jointly
completely contractive map u : X × Hc → B(L) is completely con-
tractive (in the sense of 3.1.11). For if the latter statement was true,

take u = ⊗ : X ×Hc → X
_
⊗ Hc, this is jointly completely contrac-

tive, so completely contractive, and thus linearizes to a completely

contractive linear map I : X ⊗h Hc → X
_
⊗ Hc.

We may assume that H = `2J for some set J . Let v : X →
RwJ (B(L)) = B(L(J), L) be the linear map defined by v(x) = (u(x, ei))i∈J
for any x ∈ X. As in the proof of (10), there is a sequence of isome-
tries

CB(X
_
⊗ CJ , B(L)) = CB(X,CB(CJ , B(L))) = CB(X,RwJ (B(L)))

provided by (3.17) and Proposition 1.2.25, and it is easy to check
that the composition of these maps takes u (viewed as an element

of CB(X
_
⊗ CJ , B(L))) to v. Thus ‖v‖cb = ‖u‖jcb ≤ 1. Then we

define a map w : CJ → CJ(B(L)) ⊂ B(L,L(J)) by w(ζ) = (ζjIL)
for ζ = (ζj) ∈ `2J . It is clear that ‖w‖cb = 1. Also, we have a
factorization

u(x, ζ) =
∑
j

u(x, ei)ζiIL = u(x,
∑
j

eiζi) = v(x)w(ζ), x ∈ X, ζ = (ζi) ∈ H = `2J .
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But any such product of two completely contractive linear maps, is
clearly a completely contractive bilinear map in the sense of 3.1.11)
(this is also the easy part of the later result Theorem 3.2.6). Thus u
is completely contractive.

Historical notes: This section is an expansion of [4, Section
1.5]; historical attributions are given there. The proof given here of
the injectivity of the Haagerup tensor product is from [8]; the original
source is [24].

Exercises.

(1) Show that the following map ρ : Rn ⊗h X∗ ⊗h Cn → Mn(X)∗ is
a surjective complete isometry:

ρ(
→
r⊗ϕ⊗→c )([xij ]) =

→
r [ϕ(xij)]

→
c ,

→
r ∈ Rn,

→
c ∈ Cn, ϕ ∈ X∗, [xij ] ∈Mn(X).

[Hint: Show that ρ is a complete contraction, and that ρ∗ is the
composition of the canonical complete isometries (Rn ⊗h X∗ ⊗h
Cn)∗ ∼= CB(X∗,Mn) ∼= Mn(X∗∗) ∼= Mn(X)∗∗.]

3.2 Properties of completely bounded maps

We recall that the Fourier algebras A(G) and B(G) are completely
contractive Banach algebras. We recall that a completely contractive
Banach algebra is a Banach algebra and an operator space for which

the multiplication map yields a complete contraction A
_
⊗ A → A.

Equivalently,
‖[aijbkl]‖ ≤ ‖[aij ]‖ ‖[bkl]‖.

For such algebras the usual version of left and right multipliers are
not relevant: one needs them also to be completely bounded.

Similarly, the operator space versions of Banach modules and bi-
modules are important. These satisfy similar norm conditions. Note
however that it is very important which tensor product you use. If
one uses the Haagerup tensor product one gets a completely different
class, which is just as important. Note that a unital Banach alge-
bra and an operator space for which the multiplication map yields
a complete contraction A ⊗h A → A, are exactly (up to completely
isometric isomorphism) the operator algebras–the closed subalgebras
of operators on a Hilbert space. This is the Blecher-Ruan-Sinclair
theorem.



3.2. PROPERTIES OF COMPLETELY BOUNDED MAPS 75

Theorem 3.2.1. (The Wittstock Hahn-Banach extension theorem)
If X is a closed subspace of an operator space Y , if H,K are Hilbert
spaces, and if u : X → B(K,H) is completely contractive, then there
exists a completely contractive û : Y → B(K,H) with û|X = u.

Proof. We identify K ∼= `2J and H ∼= `2I , for sets I, J , so that
B(K,H) ∼= MI,J . Now CB(X,MI,J) ∼= (RI ⊗h X ⊗h CJ)∗ isomet-
rically, via the map that takes v ∈ CB(X,MI,J) to the functional
taking r⊗ x⊗ c to rv(x)c, for r ∈ RI , c ∈ CJ , x ∈ X (see 3.1.21 (4)).
Thus u corresponds to a contractive functional ϕ in the latter space.
By the injectivity of ⊗h, we have RI ⊗h X ⊗h CJ ⊂ RI ⊗h Y ⊗h CJ .
By the usual Hahn-Banach theorem, ϕ extends to a contractive func-
tional ϕ̂ ∈ (RI ⊗h Y ⊗h CJ)∗, and by the above, this corresponds to
a complete contraction û : Y →MI,J . We have

rû(x)c = ϕ̂(r⊗x⊗c) = ϕ(r⊗x⊗c) = ru(x)c, r ∈ RI , c ∈ CJ , x ∈ X.

Thus, û(x) = u(x) for x ∈ X.

3.2.2 (Injective spaces) An operator space Z is said to be injective
if for any completely bounded linear map u : X → Z and for any
operator space Y containing X as a closed subspace, there exists a
completely bounded extension û : Y → Z such that û|X = u and
‖û‖cb = ‖u‖cb. A similar definition exists for Banach spaces. Thus
an operator space (resp. Banach space) is injective if and only if it is
an ‘injective object’ in the category of operator (resp. Banach) spaces
and completely contractive (resp. contractive) linear maps.

We remark that one version of the Hahn–Banach theorem may be
formulated as the statement that C is injective (as a Banach space).
It follows from Theorem 3.2.1 that:

Theorem 3.2.3. If H and K are Hilbert spaces then B(K,H) is an
injective operator space.

Corollary 3.2.4. An operator space is injective if and only if it is
linearly completely isometric to the range of a completely contractive
idempotent map on B(H), for some Hilbert space H.

Proof. (⇒) Supposing X ⊂ B(H), extend IX to a complete contrac-
tion P : B(H)→ X. Clearly P ◦ P = P .
(⇐) Follows from 3.2.3 and an obvious diagram chase (we leave the
details as an exercise).
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Theorem 3.2.5. (Representation of completely bounded maps) Sup-
pose that X is a subspace of a C∗-algebra B, that H and K are
Hilbert spaces, and that u : X → B(K,H) is a completely bounded
linear map. Then there exists a Hilbert space L, a ∗-representation
π : B → B(L) (which may be taken to be unital if B is unital), and
bounded operators S : L → H and T : K → L, such that u(x) =
Sπ(x)T for all x ∈ X. Moreover this can be done with ‖S‖‖T‖ =
‖u‖cb.

Conversely, any linear map u of the form u = Sπ(·)T as above,
is completely bounded with ‖u‖cb ≤ ‖S‖‖T‖.

Proof. We may suppose that u is completely contractive. In the
notation of Lemma 2.1.12, u is a ‘corner’ of a completely positive
unital map Θ defined from a subsystem of M2(B) into B(H ⊕ K).
By the extension theorem of Wittstock 3.2.1, one can extend Θ to a
unital completely positive map M2(B) → B(H ⊕K). This in turn,
by Stinespring’s theorem, equals V ∗π(·)V , for a unital representation
π of M2(B) on another Hilbert space. It is quite easy algebra to see
that any unital representation of M2(B) on a Hilbert space E gives
rise to a unitary operator U from that Hilbert space onto L⊕L, for a
subspace L of E, and a unital representation π of B on L, such that
the first representation equals [aij ] 7→ U∗[π(aij)]U , for [aij ] ∈M2(B).
In our case, we obtain[

0 u(x)
0 0

]
= Θ

([
0 x
0 0

])
= V ∗U∗

[
0 π(x)
0 0

]
UV = W ′π(x)W,

where W = [0 I]UV , with a similar formula defining W ′. Pre-
and post-multiplying by the projection from H ⊕ H onto H, and
the inclusion from H into H ⊕H, gives u = Sπ(·)T , for appropriate
contractions S, T .

The last assertion we leave as an easy exercise using Proposition
1.2.6, and Exercise (2) of Section 2.1.

The following important result states that any completely bounded
bilinear map may be factorized as a product of two completely bounded
linear maps. It is due to Christensen and Sinclair (the C∗-algebra
case), and Paulsen and Smith (the general case. Note that their
injectivity of the Haagerup tensor product (Theorem 3.1.15) imme-
diately reduces the general case to the C∗-algebra case, as we shall
see).
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Theorem 3.2.6. Suppose that X and Y are operator spaces, and
that u : X × Y → B(K,H) is a bilinear map.

(1) u is completely contractive (as a bilinear map) if and only if there
is a Hilbert space L, and there are completely contractive linear
maps v : X → B(L,H) and w : Y → B(K,L), with u(x, y) =
v(x)w(y) for all x ∈ X and y ∈ Y .

(2) If X and Y are subspaces of unital C∗-algebras A and B respec-
tively, and if the conditions in (1) hold, then there exist Hilbert
spaces K1 and K2, unital ∗-representations π : A → B(K1) and
ρ : B → B(K2), and contractions T ∈ B(K,K2), S ∈ B(K2,K1)
and R ∈ B(K1, H), such that

u(x, y) = Rπ(x)Sρ(y)T, x ∈ X, y ∈ Y.

There are half a dozen or more proofs of this result in the litera-
ture, which we describe some of. First, note that the second part of
this result follows immediately from the first part and 3.2.5. Second,
note that one may assume that X and Y are C∗-algebras. To see
this, suppose that X and Y are subspaces of C∗-algebras A and B
respectively. If ũ : X ⊗h Y → B(K,H) is the associated linear map,
then since X⊗hY ⊂ A⊗hB, by Wittstock’s extension theorem 3.2.1
we can extend ũ to a completely contractive linear map on A⊗h B.
This yields a completely contractive bilinear map on A × B. If the
C∗-algebra case holds, then this gives the desired result for A and
B, and by restriction, for X and Y .

The next observation (used in some proofs), is that one may
replace the ‘target space’ B(K,H) by C, by the same trick used in
the proof of Theorem 3.2.1. Indeed, as in that proof we have

CB(X ⊗h Y,B(K,H)) ∼= (RI ⊗h (X ⊗h Y )⊗h CJ)∗ ∼= (X ′ ⊗h Y ′)∗,

where X ′ = RI⊗hX and Y ′ = Y ⊗hCJ . If the result were true in the
scalar valued case (and by the last paragraph we may assume that
X ′, Y ′ are C∗-algebras), then we see that u corresponds to a product
v(x)w(y), for complete contractions w : Y ⊗h CJ → B(C, L) = Lc,
and v : RI ⊗h X → B(L,C) = L̄r. Using Proposition 3.1.21 (1),
(3.18), and (1.12) and the matching ‘row space’ formula found a few
paragraphs below that reference, w induces a complete contraction
w′ : Y → CB(CJ , L

c) ∼= B(H,L), and v induces a complete con-
traction v′ : X → CB(RI , L̄

r) ∼= B(L,H). It is easy to check that
u(x, y) = v′(x)w′(y), which proves the result.
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At this point, proofs of Theorem 3.2.6 that use the route of the
last paragraph now have to characterize elements of (A⊗hB)∗. Two
different approaches to this may be found in [17, Section 9.4] and
[9]. The former uses a geometric Hahn-Banach separation argument
similar to the proof of Lemma 1.2.10 (appearing first in unpublished
work of Haagerup [19]). The latter crucially uses a very useful notion
due to Roger Smith called strong independence of vectors in a Hilbert
space [30]. Other proofs may be found in [23, 27, 29], and of course
the original papers.

3.2.7 (Completely bounded bilinear functionals) If we have a com-
pletely contractive bilinear u : X × Y → C, by Theorem 3.2.6 we
may write u(x, y) = v(x)w(y). Here H is a Hilbert space, and
w : Y → B(C, H) = Hc and v : X → B(H,C) = H̄r are com-
pletely contractive linear maps. Regarding these as mapping into H
and H̄ respectively, we have

u(x, y) = 〈w(y), v(x)〉H , x ∈ X, y ∈ Y.

Or, if H = `2I , then we may regard w, v as complete contractions
Y → CI and v : X → RI respectively, and then u(x, y) = v(x)w(y),
where the multiplication occurring here is simply multiplying a row
matrix by a column matrix.

This can be rewritten in another important way. Note that v∗ :
B(H,C)∗ → X∗ is a complete contraction, and hence so is s = v∗ ◦θ,
where θ : Hc → B(H,C)∗ is the canonical complete isometry (see
(1.13)). Also,

s(w(y))(x) = θ(w(y))(v(x)) = v(x)w(y) = u(x, y) = ũ(y)(x),

where ũ : Y → X∗ is the canonical linear map associated with u.
Thus ũ = s ◦ w is a ‘factorization’ of ũ ‘through’ Hc:

Y −→ Hc −→ X∗ .

The steps here are reversible, that is, if u : X × Y → C and if ũ =
s ◦ w, where H is a Hilbert space, and w : Y → Hc and s : Hc →
X∗ are completely contractive linear maps, then u is a completely
contractive bilinear functional. That is, u corresponds in the usual
way to an element of Ball((X ⊗h Y )∗). This is a characterization
of Ball((X ⊗h Y )∗), or, if you like, of (X ⊗h Y )∗. Summarizing,
such functionals are ‘nothing but’ the maps X → Y ∗ which ‘factor
completely contractively through’ Hc.
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3.2.8 (Further remarks on Theorem 3.2.6) An analoguous result to
(1) of Theorem 3.2.6 holds for multilinear completely bounded maps.
Thus if X1, . . . , Xm are operator spaces and if vj : Xj → B(Hj , Hj−1)
are completely contractive linear maps then the N -linear mapping
taking (x1, . . . , xm) ∈ X1×· · ·×Xm to v1(x1) · · · vm(xm) ∈ B(Hm, H0)
is easily seen to be completely contractive in the sense of 3.1.11. Con-
versely, any completely contractive m-linear map u : X1×X2× . . .×
Xm → B(K,H) has this form. The proof of this latter assertion
proceeds by induction on m. Assume that it is true for k = 2 and
k = m − 1. We have an associated completely bounded linear map
defined on X1 ⊗h X2 ⊗h . . .⊗h Xm

∼= X1 ⊗h (X2 ⊗h . . .⊗h Xm) (the
latter by a fact from the discussion on associativity in 3.1.13). By
the k = 2 case, this map may be factorized as: x1⊗(x2⊗· · ·⊗xm) 7→
v1(x1)w(x2 ⊗ · · · ⊗ xm). By the k = m− 1 case, w(x2 ⊗ · · · ⊗ xm) =
v2(x2) · · · vm(xm). Thus u is of the required form.

Likewise, (2) of Theorem 3.2.6 has an analogous formulation for
multilinear maps, which follows immediately from (1) and Theorem
3.2.5.

Historical notes: The proof of Wittstock’s Theorem 3.2.1 given
here is the modification from [8] of a proof due to Effros. Theorem
3.2.5 was first proved by Haagerup in unpublished work [18] from
1980. There are some interesting historical anecdotes in this hand-
written manuscript concerning this result, and related topics. The
first published proof was the simple one that Paulsen found [22], and
this is the one given here.

3.3 Duality and tensor products of dual spaces

3.3.1 (Mapping spaces as duals) If Y is a dual operator space then
we saw in Corollary 3.1.17 that so is CB(X,Y ), for any operator

space X. Indeed by (3.18) an explicit predual for CB(X,Y ) is X
_
⊗

Y∗. From this, together with the density of the finite rank tensors

in X
_
⊗ Y∗, and the general Banach space convergence principle in

the proof of Lemma 1.3.8, it follows that a bounded net (ut)t in
CB(X,Y ) converges in the w∗-topology to a u ∈ CB(X,Y ) if and
only if ut(x)(z)→ u(x)(z) for all x ∈ X, z ∈ Y∗. That is, if and only
if ut(x) converges in the w∗-topology to u(x) in Y for all x ∈ X.
Next, suppose that Y = B(K,H) for Hilbert spaces H,K. Since
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the latter net is bounded, it follows from the fact that the weak*
topology coincides with the WOT on bounded sets in B(K,H), that
the above equivalent conditions are also equivalent to

〈ut(x)ζ, η〉 → 〈u(x)ζ, η〉 for all x ∈ X, ζ ∈ K, η ∈ H. (3.19)

It is easy to see that the latter condition is equivalent to the same
condition, but with η, ζ arbitrary elements of a orthonormal basis for
H and for K.

3.3.2 (Dual matrix spaces) If X is a dual operator space then so
is Mn(X). Indeed by (3.18) and (1.6) we have

(S1
n

_
⊗ X∗)∗ ∼= CB(X∗,Mn) ∼= Mn(X).

More generally the same proof, but substituting 1.2.23 (12) for (1.6),
shows that for sets I, J , MI,J(X) is a dual operator space with opera-

tor space predual S1(`2I , `
2
J)

_
⊗ X∗, and also MI,J(X) ∼= CB(X∗,MI,J).

Alternatively, note that by (3.18) and 3.1.21 (10), we have

(S1(`2I , `
2
J)

_
⊗ X∗)∗ ∼= CB(S1(`2I , `

2
J), X) ∼= MI,J(X).

If I, J are sets, and if I0 and J0 are finite subsets of I and J
respectively, write ∆ = I0 × J0. The set Λ of such ∆ is a directed
set under the usual ordering. For such ∆, and for x ∈ MI,J(X), we
write x∆ for the matrix x, but with entries xij switched to zero if
(i, j) /∈ ∆. Then (x∆)∆ is a net indexed by ∆ ∈ Λ, which we call the
net of finite submatrices of x.

Corollary 3.3.3. (Effros and Ruan) Let X be a dual operator
space, and let I, J be sets.

(1) If (xt)t is a bounded net in MI,J(X), then xt → x ∈ MI,J(X)
in the w∗-topology in MI,J(X), if and only if each entry in xt
converges in the w∗-topology in X to the corresponding entry in
x.

(2) If Y is a dual operator space, and if u : X → Y is a w∗-continuous
completely bounded map, then the amplification uI,J : MI,J(X)→
MI,J(Y ) is w∗-continuous.

(3) Mfin
I,J(X) is w∗-dense in MI,J(X). Indeed if I, J are sets, and

x ∈ MI,J(X), then the net of finite submatrices of x converges
to x in the w∗-topology.
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Proof. As we said in (3.3.2), MI,J(X) = CB(X∗,MI,J) = CB(X∗, B(`2J , `
2
I)).

By (3.19) and the remark after it, it follows that a bounded net
xs → x ∈MI,J(X) ∼= CB(X∗, B(`2J , `

2
I)) if and only if

〈[xsi,j(ϕ)]ej , ei〉 = xsi,j(ϕ)→ 〈[xi,j(ϕ)]ej , ei〉 = xi,j(ϕ), ϕ ∈ X∗,

that is, if and only if xsi,j → xi,j weak*, for all i ∈ I, j ∈ J . This is
(1).

Items (2) and (3) follow immediately from (1). For example, if
u : X → Y is w∗-continuous, and if we have a bounded net xs → x ∈
MI,J(X), then by (1) each entry of xs converges weak* to the corre-
sponding entry of x. Also, (uI,J(xs)) is a bounded net in MI,J(X),
and it converges to uI,J(x) by (1) again, since each entry of uI,J(xs)
converges weak* to the corresponding entry of uI,J(x). Thus uI,J
is w∗-continuous as a consequence of the Krein-Smulian theorem
(namely, a linear bounded map u : E → F between dual Banach
spaces is w*-continuous if and only if whenever xt → x is a bounded
net converging in the w*-topology in E, then u(xt) → u(x) in the
w*-topology).

Note that in 3.3.3 (2), if u is also a complete isometry then by
the consequence of the Krein-Smulian theorem stated in the proof of
Lemma 1.3.8 above, we see that uI,J is a w∗-homeomorphism onto
its range, which is w∗-closed. As a corollary we see that for a w∗-
closed subspace X ⊂ B(K,H), one may define MI,J(X) to be the
w∗-closure of Mfin

I,J(X) in MI,J(B(K,H)) = B(K(J), H(I)). Indeed,
taking u to be the embedding X → B(K,H), we see that MI,J(X) is
w∗-homeomorphically completely isometric to a w∗-closed subspace
of MI,J(B(K,H)). Applying (3) of the last result we deduce the
statement about Mfin

I,J(X).

We turn next to a characterization of dual operator spaces:

Theorem 3.3.4. Let X be an operator space with a given weak*
topology (coming from a predual Banach space). The following are
equivalent:

(i) X with its given weak* topology is a dual operator space.

(ii) Mn(X) is a dual Banach space, and the n2 canonical inclusion
maps from X into Mn(X) are w∗-continuous, for all n ≥ 2.

(iii) Whenever (xs)s is a net in Ball(Mn(X)), x ∈ Mn(X), and the
i-j entry of xs converges in the weak* topology to the i-j entry
of x for all i, j = 1, . . . , n, then x ∈ Ball(Mn(X)).
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Proof. Write εij : X →Mn(X) for the ‘i-j inclusion map’.
(i) ⇒ (ii) If xt → x weak* in X then by Theorem 3.3.3 (i) we

have εij(xt)→ εij(x) weak*. So εij is w∗-continuous.
(ii) ⇒ (iii) If xs, x are as in (iii), with xsij → xij weak* for all

i, j, then by (ii) we have εij(x
s
ij)→ εij(xij) weak*, so that

xs =
n∑

i,j=1

εij(x
s
ij)→

n∑
i,j=1

εij(xij) = x

weak* in Mn(X). If xs ∈ Ball(Mn(X)), then since the latter ball is
weak* closed, it follows that x ∈ Ball(Mn(X)).

(iii) ⇒ (i) We may suppose that the predual Banach space W ⊂
X∗. We will always regard W as an operator space by giving it the
inherited matrix norms from X∗. We will use Exercise (1) of Section
2.4, namely that the following canonical map ρ : Rn⊗hX∗⊗h Cn →
Mn(X)∗ is a surjective complete isometry:

ρ(
→
r⊗ϕ⊗→c )([xij ]) =

→
r [ϕ(xij)]

→
c ,

→
r ∈ Rn,

→
c ∈ Cn, ϕ ∈ X∗, [xij ] ∈Mn(X).

Alternatively, this fact can be proved from the later result (3.21),
since using that result and 3.1.21 (6), we have Rn ⊗h X∗ ⊗h Cn ∼=
(Cn ⊗h X ⊗h Rn)∗ ∼= Mn(X)∗. Note that

ρ(
→
ek⊗ϕ⊗

→
el)([xij ]) = ϕ(xkl), ϕ ∈ X∗, [xij ] ∈Mn(X), k, l ∈ {1, . . . , n}.

Since ⊗h is injective we deduce that Rn⊗hW ⊗hCn ⊂ Rn⊗hX∗⊗h
Cn ∼= Mn(X)∗ isometrically. Define θ : Mn(X)→ (Rn⊗hW ⊗hCn)∗

by θ(x)(u) = ρ(u)(x), for x ∈Mn(X), u ∈ Rn⊗hW ⊗hCn. Note that

θ(x)(
→
ek⊗w⊗

→
el) = w(xkl), for w ∈W , by the last centered equation.

From this it is clear that θ is one-to-one, and it is easy to see that
it is onto. Note that θ(Ball(Mn(X))) is w∗-closed by hypothesis, for
if θ(xs) → θ(x) weak* in (Rn ⊗h W ⊗h Cn)∗, with ‖xs‖ ≤ 1, then
by the last line, w(xskl) → w(xkl) for all w ∈ W, and k, l. That is,
xskl → xkl weak*, so that ‖x‖ ≤ 1 by (iii).

If u ∈ Rn ⊗hW ⊗h Cn then ‖u‖ = ‖ρ(u)‖, which equals

sup{‖ρ(u)(x)‖ : x ∈ Ball(Mn(X))} = sup{‖θ(x)(u)‖ : x ∈ Ball(Mn(X))}.

Thus the pre-polar θ(Ball(Mn(X)))◦ equals the unit ball of Rn ⊗h
W ⊗h Cn. Therefore by the bipolar theorem, θ(Ball(Mn(X))) =
Ball((Rn⊗hW ⊗hCn)∗). That is, θ is an isometry. The composition
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of θ with the canonical isometries (Rn⊗hW⊗hCn)∗ ∼= CB(W,Mn) =
Mn(W ∗) from 3.1.21 (4) and (1.6), is the nth amplification of the
isometry X →W ∗. Since this holds for any n ≥ 1, the latter map is
a complete isometry. Thus W ∗ = X completely isometrically.

3.3.5 (Normal spatial tensor product) If X and Y are dual operator
spaces, with operator space preduals X∗ and Y∗, then CB(Y∗, X) is

the dual operator space of X∗
_
⊗ Y∗ by 3.3.1. As in (3.6), we regard

X ⊗min Y ↪→ CB(Y∗, X), and we define the normal minimal tensor
product X ⊗Y to be the w∗-closure of X ⊗ Y (or of X ⊗min Y ) in
CB(Y∗, X). Equivalently, if X and Y are w∗-closed subspaces of
B(H) and B(K) respectively, then we may define X ⊗Y to be the
w∗-closure in B(H ⊗2 K) of the copy of X ⊗ Y . This is sometimes
referred to as the normal spatial tensor product. If M and N are W ∗-
algebras, then M ⊗N as described above is clearly a von Neumann
algebra; and indeed M ⊗N is just the usual von Neumann algebra
tensor product. In particular, B(H)⊗B(K) = B(H⊗2K), since the
former contains as a weak* dense subset K(H) ⊗min K(K) (or even
the tensor product of the finite rank operators). To see that these two
definitions of X ⊗Y are the same (up to w∗-homeomorphic complete
isometry), we use the following argument. Since X and Y are w∗-
closed subspaces of B(H) and B(K) respectively, we know by 1.3.7
that X∗ and Y∗ are quotients of S1(H) and S1(K) respectively. By

the ‘projectivity’ property of
_
⊗, we obtain a complete quotient map

Q : S1(H)
_
⊗ S1(K) → X∗

_
⊗ Y∗. Using the identification (3.18) we

see that Q∗ may be viewed as a w∗-continuous completely isometric
embedding

CB(Y∗, X) ↪→ CB(S1(K), B(H)) ∼= B(H ⊗2 K),

the last relation from the first paragraph of 3.1.6. Via the canonical
identification of X⊗Y with a subset of CB(Y∗, X), it is easy to argue
that the w∗-closure of X ⊗ Y in B(H ⊗2 K) may be identified with
the w∗-closure of X ⊗ Y in CB(Y∗, X).

In general, CB(Y∗, X) (or equivalently, (X∗
_
⊗ Y∗)

∗) is not equal
to X ⊗Y ; nonetheless they do coincide in many cases of interest. In
fact, we have

Theorem 3.3.6. (Blecher, Ruan) For any dual operator spaces X
and Y we have

(X∗
_
⊗ Y∗)∗ ∼= CB(Y∗, X) ∼= X ⊗F Y,
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where the latter is the normal Fubini product of X and Y .

The normal Fubini product is defined in terms of ‘slice maps’, and
thus the question of whether X ⊗Y = CB(Y∗, X) holds, is related
to slice map properties.

Corollary 3.3.7. (Effros-Ruan von Neumann tensor product for-
mula) If M and N are von Neumann algebras then the operator

space predual of M⊗N is M∗
_
⊗ N∗. Thus

M⊗N ∼= (M∗
_
⊗ N∗)∗ ∼= CB(N∗,M).

Proof. (Sketch) By Theorem 3.3.6 this is equivalent to showing that
M⊗N = M ⊗FN . The latter is defined in terms of ‘slice maps’, and
the crux of the proof is applying Tomiyama’s slice map theorem for
von Neumann algebras, which in turn is a consequence of the deep
fact (M⊗N)′ = M ′⊗N ′.

3.3.8 (Application to Fourier algebras) The last theorem has a very
important influential application to the Fourier algebra A(G), of a
compact group G say, that was an early triumph of operator space
theory. Quoting from Nico Spronk’s course: “Let us recall the happy
fact that A(G)∗ = V N(G). Now we have a unitary equivalence
L2(G)⊗2 L2(K) ∼= L2(G×K) which intertwines λG × λH ∼= λG×H ,
and hence gives us a spatial equivalence

V N(G)⊗̄V N(K) ∼= V N(G×K).

Hence the Effros-Ruan tensor product formula gives us (completely
isometrically)

A(G)
_
⊗ A(K) ∼= A(G×K).

We discuss two more examples of when X ⊗Y = CB(Y∗, X)
holds. We have X ⊗Y = CB(Y∗, X) holds when X = B(H,K).
Indeed, for any dual operator space Y and sets I, J ,

MI,J ⊗ Y ∼= MI,J(Y ) (3.20)

as dual operator spaces. This follows by the remark after 3.3.3, and
an argument similar to the one used for (3.8). Also, MI,J(Y ) ∼=
CB(Y∗,MI,J) by 1.2.23 (12) (setting one of the spaces there equal to
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C). Thus MI,J ⊗Y ∼= CB(Y∗,MI,J). Note that taking J singleton,
and Y = K̄r, gives Hc⊗ K̄r ∼= B(K,H).

Finally the relation also holds when one of X or Y is a commu-
tative von Neumann algebra. We omit the simple proof (see e.g. [4,
Chapter 1]).

We leave it as an exercise that the normal spatial tensor product is
‘associative’, and ‘functorial’ for w∗-continuous completely bounded
maps.

3.3.9 (W ∗-continuous extensions of bilinear maps) Let X,Y be
operator spaces, let W be a dual operator space, and let u : X×Y →
W be a completely contractive bilinear map. We claim that there is
a unique separately w∗-continuous extension ũ : X∗∗ × Y ∗∗ → W of
u, and this extension is completely contractive too. To prove this, we
may assume by Lemma 1.3.8 that W is a w∗-closed subspace of some
B(H). By the Theorem 3.2.6, there exists a Hilbert space L and two
completely contractive maps v : X → B(L,H) and w : Y → B(H,L)
such that u(x, y) = v(x)w(y) for all x ∈ X, y ∈ Y . By 1.3.9, v and
w have w∗-continuous completely contractive extensions ṽ : X∗∗ →
B(L,H) and w̃ : Y ∗∗ → B(H,L). Define ũ : X∗∗ × Y ∗∗ → B(H) by
setting ũ(η, ν) = ṽ(η)w̃(ν), for η ∈ X∗∗, ν ∈ Y ∗∗. Then the easy
part of Theorem 3.2.6 ensures that ũ is completely contractive, and
it clearly is separately w∗-continuous, and extends u. Note that for
any separately w∗-continuous extension ũ : X∗∗ × Y ∗∗ → B(H) of u,
we must have

ũ(η, ν) = lim
s

lim
t
u(xt, ys), ifxt → η, ys → ν,

where all the limits here are in the weak* topology. From this we see
that ũ(η, ν) ∈W , and also the uniqueness of the extension.

3.3.10 (Self-duality of ⊗h) Let X and Y be operator spaces. Then

X∗ ⊗h Y ∗ ↪→ (X ⊗h Y )∗ completely isometrically (3.21)

via the canonical map J (that is, J(ϕ⊗ ψ)(x⊗ y) = ϕ(x)ψ(y)). To
prove this, we first assume that X and Y are finite-dimensional. In
this case, J is a surjection, by linear algebra. An element U in the
ball of Mn((X⊗hY )∗) corresponds by (1.6) to a complete contraction
u : X⊗hY →Mn. By 3.2.6 (1), there exist a Hilbert space L and two
complete contractions v : X → B(L,Cn) and w : Y → B(Cn, L) such
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that u(x⊗ y) = v(x)w(y) for any x ∈ X and y ∈ Y . We may assume
that L is finite dimensional, by replacing L by its finite dimensional
subspace [w(Y )Cn], and restricting v(x) to that subspace. Thus we
may assume that v : X → Mn,p and w : Y → Mp,n, for an integer
p ≥ 1. We let ϕ = [ϕij ] ∈ Mn,p(X

∗) and ψ = [ψij ] ∈ Mp,n(Y ∗) be
the two matrices corresponding to v and w respectively (by a variant
of (1.6), these have norm ≤ 1. Then

u(x⊗y) = v(x)w(y) = [ϕij(x)][ψij(y)] =
[∑
k

ϕik(x)ψkj(y)
]
, x ∈ X, y ∈ Y.

If z = ϕ � ψ then it is easy to see that Jn(z) = U , and ‖z‖h ≤
‖ϕ‖‖ψ‖ = ‖v‖cb‖w‖cb ≤ 1. The converse inequality ‖U‖cb ≤ ‖z‖h
may be obtained by reversing the arguments.

In the general case, fix [uij ] ∈ Mn(X∗ ⊗ Y ∗). Write each uij ∈
X∗⊗Y ∗ in the form

∑m
k=1 ϕk⊗ψk, for functionals ϕk ∈ X∗, ψk ∈ Y ∗.

Let W (resp. Z) be the span of all these (finite number of) functionals
in X∗ (resp. Y ∗), over all i and j too. Then W ∼= (X/W⊥)∗ and
Z ∼= (Y/Z⊥)∗ isometrically. The canonical maps X → X/W⊥ and
Y → Y/Z⊥ induce a complete quotient map X ⊗h Y → (X/W⊥)⊗h
(Y/Z⊥), by the projectivity of ⊗h (see the third bullet in 3.1.13).
By 1.3.3, the last map dualizes to give a weak* continuous complete
isometry ((X/W⊥) ⊗h (Y/Z⊥))∗ → (X ⊗h Y )∗. On the other hand,
by the last paragraph, ((X/W⊥)⊗h (Y/Z⊥))∗ ∼= W ⊗h Z completely
isometrically. Thus we have the following diagram of completely
isometries (the vertical arrow coming from the injectivity of ⊗h, see
3.1.13):

Mn(X∗ ⊗ Y ∗)x
Mn(W ⊗h Z) −→ Mn(((X/W⊥)⊗h (Y/Z⊥))∗) −→ Mn((X ⊗h Y )∗).

We may view [uij ] in Mn(W ⊗h Z). The composition of the maps in
the last sequence is easily seen to take [uij ] to [J(uij)] ∈ Mn((X ⊗h
Y )∗), and so we are done.

3.3.11 (The dual of the Haagerup tensor product) If X and Y
are operator spaces then w ∈ (X ⊗h Y )∗ if and only if there exist
[ϕi] ∈ RwI (X∗) and [ψi] ∈ CwI (Y ∗) such that w may be written as

w(x⊗ y) =
∑
i∈I

ϕi(x)ψi(y), x ∈ X, y ∈ Y. (3.22)
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The last sum converges absolutely in C, as may be seen by the
Cauchy–Schwarz inequality:∑
i∈I
|ϕi(x)ψi(y)| ≤

(∑
i∈I
|ϕi(x)|2

) 1
2
(∑
i∈I
|ψi(y)|2

) 1
2 = ‖ϕ(x)‖‖ψ(y)‖,

where ϕ : X → RI and ψ : Y → CI are the canonical maps which are
associated with [ϕi] ∈ RwI (X∗) and [ψi] ∈ CwI (Y ∗). Indeed, by 1.2.23
(12), for example, ϕ and ψ are completely contractive iff [ϕi] and [ψi]
have norm ≤ 1. Note that (3.22) may be rewritten as w(x ⊗ y) =
ϕ(x)ψ(y), and now this relation may be seen to be a restatement of
the discussion in 3.2.7. Indeed, this argument shows that ‖w‖ ≤ 1 iff
ϕ,ψ above may be chosen to be complete contractions, and iff [ϕi]
and [ψi] in (3.22) have norm ≤ 1.

Thus every w ∈ (X ⊗h Y )∗ ‘is’ a sum of rank one tensors

w =
∑
i∈I

ϕi ⊗ ψi ϕi ∈ X∗ , ψi ∈ Y ∗,

with [ϕi] ∈ RwI (X∗), [ψi] ∈ CwI (X∗). Viewing (X ⊗h Y )∗ as a tensor
product of X∗ and Y ∗ in this way, leads to the weak* Haagerup
tensor product, often called the extended Haagerup tensor product,
which we shall not discuss further here. It has properties analogous
to the Haagerup tensor product, and was studied by Blecher and
Smith, Effros and Ruan, Spronk, and others.

If time permits we will cover more on the weak∗/extended Haagerup
tensor product, including some material from Spronk, Proc London
Math Soc 89 (2004), 161-192.

Historical note: Nearly all the facts about infinite matrices in
3.3.2 and 3.3.3 are explicitly in [20, 13, 14]. The result 3.3.4 is due
to Le Merdy [21]. See e.g. [17] for more on the normal spatial ten-
sor product and the Fubini tensor product. The selfduality relation
(3.21) was proved in full in [16]. Different proofs appear in [3, 9]. The
dual of the Haagerup tensor product was first explored by Effros and
Kishimoto [11] following unpublished work of Haagerup [19], viewing
this dual as a tensor product originates in [9].

END OF COURSE

For more details on topics in this course, or other more advanced
aspects of the theory of operator spaces, see the basic operator space
texts, which can be found in the reference list below.
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