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Abstract for Lecture 4

We discuss Arvesons noncommutative H∞, and associated von Neumann
algebraic Hp spaces. First we review the theory for finite von Neumann
algebras, then discuss the general von Neumann algebra case (joint work
with Louis Labuschagne).



From the Preface, “Banach spaces of analytic functions”, by Kenneth
Hoffman (1962)

“many of the techniques of functional analysis have a ‘real variable’ cha-
racter and are not directly applicable to... analytic function theory... But
there are parts ... which blend beautifully ... . These are fascinating areas
of study for the general analyst, for three principal reasons: (a) the point
of view of the algebraic analyst leads to the formulation of many interesting
problems concerned with analytic functions; (b) when such problems are
solved by a combination of the tools from the two disciplines, the depth of
each discipline is increased; (c) the techniques of functional analysis often
lend clarity and elegance to the proofs of the classical theorems, and thereby
make the results available in more general situations. ”



Section 1. Introduction and the classical case

Beginning in his 1964 UCLA PhD thesis, Arveson found a beautiful way
to combine the theory of von Neumann algebras and Hardy spaces via his
subdiagonal subalgebra of a von Neumann algebra M

He was inspired by prediction theory (Helson-Lowdenslager, Wiener-Masana),
...



Arveson was also inspired by some emerging ‘abstract analytic function
theory’

which they sometimes called ‘analytic function theory without analytic
functions’



Arveson was also inspired by some emerging ‘abstract analytic function
theory’

which they sometimes called ‘analytic function theory without analytic
functions’

– it was becoming clear then that many famous theorems about analytic
functions, and about the Hardy spaces Hp(D), were essentially algebraic in
nature

(i.e. they could be generalized to an abstract uniform algebraic setting
where they followed from general algebraic, functional analytic (particularly
Hilbert space) principles)



Isolating carefully what makes some of the most important theorems about
H∞(D), such as Beurling, F & M Riesz, etc Beurling’s theorem, work, re-
searchers in the 60s (Helson-Lowdenslager, Hoffman, Srinivasan and Wang,
and many others) arrived at the following very simple setting:

• X a probability space, A a closed subalgebra of L∞(X) containing
constants, such that:∫

fg =

∫
f

∫
g, f, g ∈ A

(Note: this clearly applies to H∞(D) ⊂ L∞(T))

We suppose A is weak* closed (otherwise replace...)

Define Hp to be the closure of A in the p-norm.



Theorem. (Hoffman, Srinivasan-Wang, ...) For such A, the following eight
are equivalent

(i) the weak* closure of A + Ā is all of L∞(X).

(ii) A has ‘factorization’: (i.e. b ∈ L∞, b ≥ ε1 > 0 iff b = |a|2 for an
invertible a ∈ A)

(iii) A is logmodular (similar to (iii) but b = ĺımn |an|2...)

(iv) A satisfies Szegö’s theorem (i.e. exp
∫

log g =
inf{

∫
|1− f |pg : f ∈ A,

∫
f = 0}, for any g ∈ L1(X)+).



(v) g ∈ L1(X)+,
∫
fg =

∫
f for all f ∈ A, then g = 1 a.e..

(vi) Beurling type invariant subspace property: every ‘simply A-invariant subs-
pace’ of Lp is of the form uHp for a function u with |u| ≡ 1.

(vii) Beurling-Nevanlinna factorization property: Every f ∈ Lp such that∫
log |f | > −∞ has an (essentially unique) ‘inner-outer factorization’

f = uh, u unimodular and h ∈ Hp ‘outer’ (i.e. 1 ∈ [hA]p).

(viii) Every normal (i.e. weak* continuous) functional on A has a unique
Hahn-Banach extension to L∞, and this is normal (‘Gleason-Whitney
property’).



(v) g ∈ L1(X)+,
∫
fg =

∫
f for all f ∈ A, then g = 1 a.e..

(vi) Beurling type invariant subspace property: every ‘simply A-invariant subs-
pace’ of Lp is of the form uHp for a function u with |u| ≡ 1.

(vii) Beurling-Nevanlinna factorization property: Every f ∈ Lp such that∫
log |f | > −∞ has an (essentially unique) ‘inner-outer factorization’

f = uh, u unimodular and h ∈ Hp ‘outer’ (i.e. 1 ∈ [hA]p).

(viii) Every normal (i.e. weak* continuous) functional on A has a unique
Hahn-Banach extension to L∞, and this is normal (‘Gleason-Whitney
property’).

• These are the weak* Dirichlet algebras.



• Not only does this result visit interesting topics, e.g. Beurling’s invariant
subspace theorem, outers, etc, but it shows that these topics are tightly
connected (and characterize the basic object)

• Almost all of the implications are quite pretty and nontrivial, and this
persists when we go to the noncommutative case. Some of these or the
properties that follow, were open 30 or 40 years in Arveson’s NC case



Other properties of such algebras A ⊂ L∞:

Jensen’s inequality: log |
∫
f | ≤

∫
log |f |, f ∈ A

Jensen’s formula: log |
∫
f | =

∫
log |f |, f ∈ A−1

F & M Riesz theorem

(if a measure annihilates A then its absolutely continuous and singular
parts separately annihilate A; the classical statement of the F & M Riesz
theorem does not generalize, but this is an equivalent statement that
does generalize).

Riesz factorization: h ∈ Hp factors as h = h1h2 with h1 ∈ Hq, h2 ∈
Hr, any 1/p = 1/q + 1/r.

(Characterization of outers:) h ∈ Hp satisfies
1 ∈ [hA]p iff log

∫
|h| =

∫
log |h| > 0.

Eg. f ∈ L1
+,&

∫
log f > −∞ ⇒ f = |h|p, h outer in Hp

Szegö’s theorem (e.g. exp
∫

log g =
inf{

∫
|1− f |pg : f ∈ A,

∫
f = 0}, for any g ∈ L1(X)+).



• Thus these authors from the 1960s replaced ‘analyticity’ by a very al-
gebraic situation concerning function algebras in which general functional
analysis tools, and in particular Hilbert space tools, yield these fundamental
theorems
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• Thus these authors from the 1960s replaced ‘analyticity’ by a very al-
gebraic situation concerning function algebras in which general functional
analysis tools, and in particular Hilbert space tools, yield these fundamental
theorems

• Arveson wanted to replace function algebras by operator algebras

• In particular, one has to take the classical arguments, which feature nu-
merous tricks with functions which fail for operators, and replace them with
noncommutative tools coming from the theory of von Neumann algebras
and unbounded operators.

For example, in many classical papers on Hp spaces one finds arguments
involving expressions of the form ef (x) · · · but such exponentials behave
badly in the noncommutative case, if the exponent is not a normal operator.



Section 2. Arveson’s von Neumann algebraic Hardy spaces

In this section M is a von Neumann algebra with a faithful normal tracial
state τ . This was mostly the context Arveson worked in

Let D ⊂M be a von Neumann subalgebra

Let A be a weak* closed subalgebra of M with A ∩ A∗ = D, such that:

the (unique) trace preserving conditional expectation Φ : M → D satis-
fies:

Φ(a1a2) = Φ(a1) Φ(a2), a1, a2 ∈ A.

(In classical case, D = C1 and Φ = τ (·)1.)

Need one more condition, and then we will have Arveson’s (maximal)
subdiagonal algebras



One may define Hp to be the closure of A in the noncommutative Lp

space Lp(M), which in turn may be defined to be the closure of M in the

norm ‖x‖p = τ (|x|p)
1
p.
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space Lp(M), which in turn may be defined to be the closure of M in the

norm ‖x‖p = τ (|x|p)
1
p.

• In the case that A = M , the Hp space collapses to Lp(M)

• At the other extreme, if A contains no selfadjoint elements except scalar
multiples of the identity, and M is commutative, the theory collapses to
the classical theory from the 1960s of generalized Hp spaces associated to
‘weak* Dirichlet algebras’, a class of abstract function algebras



One may define Hp to be the closure of A in the noncommutative Lp

space Lp(M), which in turn may be defined to be the closure of M in the

norm ‖x‖p = τ (|x|p)
1
p.

• In the case that A = M , the Hp space collapses to Lp(M)

• At the other extreme, if A contains no selfadjoint elements except scalar
multiples of the identity, and M is commutative, the theory collapses to
the classical theory from the 1960s of generalized Hp spaces associated to
‘weak* Dirichlet algebras’, a class of abstract function algebras

• Thus Arveson’s setting formally merges noncomm Lp spaces, with a
classical abstract function algebra generalization of Hp spaces



• Arveson also included many interesting examples, showing that his fra-
mework synthesized several theories that were emerging in the 1960s (eg.
Kadison-Singer nonselfadjoint op algs, ...)



• Arveson also included many interesting examples, showing that his fra-
mework synthesized several theories that were emerging in the 1960s (eg.
Kadison-Singer nonselfadjoint op algs, ...)

• Contributors over the next decades include: Zsidó, Loebl, Muhly, McAsey,
Saito (and his school in Japan), Exel, Marsalli, West, Pisier, Quanhua Xu,
Ji, Nakazi, Watatani, Randrianantoanina

B + Labuschagne - long series of papers

More recently: Ueda, Bekjan, Q Xu, Prunaru, Labuschagne, Ji, and many
others · · ·



Some examples of subdiagonal algebras:

(i) If M is commutative, D = C1, subdiagonal algebras coincide with the
classical weak* Dirichlet algebras

(ii) Upper triangular matrices in Mn, here Φ is the projection onto the dia-
gonal matrices

(iii) (Arveson) Let G be a countable discrete group with a linear ordering
which is invariant under left multiplication, say (for example, any free
group). The subalgebra generated by G+ in the group von Neumann
algebra of G, gives a subdiagonal algebra

(iv) Mimic the construction of the ‘hyperfinite II1 factor’, but with upper
triangular matrices

(v) (Zsidó, Loebl-Muhly, Kawamura-Tomiyama) Let α be any one-parameter
group of ∗-automorphisms of a von Neumann algebra M satisfying a cer-
tain ergodicity property (in particular, any of those arising in the Tomita-
Takesaki theory)



In the last example, one gets a subdiagonal algebra A ⊂ M from the
elements of M with ‘spectrum with respect to α’ in R+



More on noncommutative Lp: If M acts on a Hilbert space H, let M̃ be
the set of unbounded, but closed and densely defined, operators on H which
are affiliated to M (that is, Tu = uT for all unitaries u ∈M ′).

• This is a ∗-algebra with respect to the ‘strong’ sum and product

• We can also use the functional calculus for selfadjoint unbounded ope-
rators, for example defining |T |p, log |T |, etc.

• The trace τ extends naturally to the positive operators in M̃ .

• If 1 ≤ p < ∞, then Lp(M) = {a ∈ M̃ : τ (|a|p) < ∞}, with norm

‖ · ‖p = τ (| · |p)1/p



L∞(M) = M

L1(M)∗ ∼= M isometrically, via the map taking T ∈ L1(M) to the normal
functional τ (T · ) on M .

• This isomorphism is an M -module map which respects the natural po-
sitive cones on these spaces
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L1(M)∗ ∼= M isometrically, via the map taking T ∈ L1(M) to the normal
functional τ (T · ) on M .

• This isomorphism is an M -module map which respects the natural po-
sitive cones on these spaces

• A special role is played by L2(M) as you might expect.

This is a Hilbert space, which is just (the completion of) M with inner
product τ (xy∗).



L∞(M) = M

L1(M)∗ ∼= M isometrically, via the map taking T ∈ L1(M) to the normal
functional τ (T · ) on M .

• This isomorphism is an M -module map which respects the natural po-
sitive cones on these spaces

• A special role is played by L2(M) as you might expect.

This is a Hilbert space, which is just (the completion of) M with inner
product τ (xy∗).

Note that M has two natural representations on L2(M), the left and the
right regular representation

This is called the standard form—a major noncommutative tool



The Fuglede-Kadison determinant

Remarkable positive scalar valued function ∆ defined on M or Lp(M) (or
larger domains):

∆(a) = exp τ (log |a|) if |a| > 0. Otherwise, ∆(a) = inf ∆(|a| + ε1), the
infimum taken over all scalars ε > 0.

• Alternatively,

∆(a) = exp
(∫ ∞

0
log t dν|a|(t)

)
,

where dν|a| is the probability measure on R+ which is the spectral measure

of |a| composed with the trace τ



∆(·) has the following properties:

(1) ∆(h) = ∆(h∗) = ∆(|h|).

(2) If h ≥ g in Lp(M)+ then ∆(h) ≥ ∆(g).

(3) If h ≥ 0 then ∆(hq) = ∆(h)q for any q > 0.

(4) ∆(hk) = ∆(h)∆(k) = ∆(kh)

• Proofs in L. G. Brown (1986), Haagerup-Schultz (2006)



∆(·) has the following properties:

(1) ∆(h) = ∆(h∗) = ∆(|h|).

(2) If h ≥ g in Lp(M)+ then ∆(h) ≥ ∆(g).

(3) If h ≥ 0 then ∆(hq) = ∆(h)q for any q > 0.

(4) ∆(hk) = ∆(h)∆(k) = ∆(kh)

• Proofs in L. G. Brown (1986), Haagerup-Schultz (2006)

We will also use singular functionals (that is, every nonzero projection
dominates a nonzero projection in the kernel of the functional), and the
nc Lebesgue decomposition: Functionals on a von Neumann algebra have
a unique normal plus singular decomposition ϕ = ϕn + ϕs, and ‖ϕ‖ =
‖ϕn‖ + ‖ϕs‖.



A result that maps out some of the geography of the area:

Theorem (B-L) For such A, the following eight conditions are equivalent:

(i) A is subdiagonal (i.e. A + A∗w∗ = M)

(ii) A has factorization (i.e. b ∈M+, b invertible iff b = a∗a for an invertible
a ∈ A)

(iii) A is logmodular (similar to (ii) but b = ĺımn |an|2...)

(iv) A satisfies the NC Szegö’s formula above

(v) a) L2-density of A+A∗ in L2(M); and b) if g ∈ L1(M)+, τ (fg) = τ (f )
for all f ∈ A, then g = 1

(vi) A Beurling-type invariant subspace condn: every A-invariant subspace of
Lp(M) has a decomposition of the form ... (related to Junge-Sherman
05, Nakazi-Watatani, and earlier work).

(vii) (Beurling-Nevanlinna factorization) Every f ∈ Lp(M) such that ∆(f ) >
0 has an ‘inner-outer factorization’ f = uh, u unitary and h outer.



(viii) (Gleason-Whitney property) there exists at most one normal Hahn-
Banach extension of any normal functional on A

A key step along our way, was the breakthrough in which my coauthor
settled one of Arveson’s 35 year old open problems:

Theorem (Labuschagne) Subdiagonal algebras satisfy Szegö’s theorem
and Jensen’s inequality



(viii) (Gleason-Whitney property) there exists at most one normal Hahn-
Banach extension of any normal functional on A

A key step along our way, was the breakthrough in which my coauthor
settled one of Arveson’s 35 year old open problems:

Theorem (Labuschagne) Subdiagonal algebras satisfy Szegö’s theorem
and Jensen’s inequality

• The Fuglede-Kadison determinant and its properties is the most impor-
tant ingredient of many of the proofs. Also use ‘finite von Neumann algebra’
techniques, unbounded operators and their functional calculus, noncommu-
tative Lp-space tools, such as the standard form, etc.



Theorem (Generalized Jensen inequality)

∆(h) ≥ ∆(Φ(h)), h ∈ H1

• We also obtained generalizations of the classical results on outers,
inner-outer factorization, etc

Eg. We have characterizations of outers in terms of ∆(h) = ∆(Φ(h)) > 0,
and e.g.

Theorem If f ∈ Lp(M) then ∆(f ) > 0 iff f = uh for a unitary u and
a strongly outer h ∈ Hp. Moreover, this factorization is unique up to a
unitary in D.

(u ∈ A iff f ∈ Hp)



Theorem (F & M Riesz theorem) If a functional ϕ ∈ M∗ annihilates A
then its absolutely continuous (normal) and singular parts separately annihi-
late A).

(The classical statement of the F & M Riesz theorem does not generalize,
but the above is an equivalent statement that does generalize)
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In our paper we required the hypothesis D finite dimensional in our F &
M Riesz theorem. This hypothesis was later removed by Ueda, and similarly
in the next result, as we shall discuss later



Theorem (F & M Riesz theorem) If a functional ϕ ∈ M∗ annihilates A
then its absolutely continuous (normal) and singular parts separately annihi-
late A).

(The classical statement of the F & M Riesz theorem does not generalize,
but the above is an equivalent statement that does generalize)

In our paper we required the hypothesis D finite dimensional in our F &
M Riesz theorem. This hypothesis was later removed by Ueda, and similarly
in the next result, as we shall discuss later

Gleason-Whitney property: We said that for a subdiagonal algebra A, there
exists at most one normal Hahn-Banach extension to M of any normal
functional on A. We also proved that if D finite dimensional, every Hahn-
Banach extension to M of any normal functional on A, is normal.



Summary so far: The analytic principles in the classical theory are actually
far more algebraic in nature than was even anticipated in the 1960s. That
is, the results in the Hoffman et al algebraic approach to analyticity, all
extend in an unusually literal manner to Arveson’s class of noncommutative
algebras in von Neumann algebras with a faithful normal tracial state. And
in a way that merges the abstract Hp theory and vNAs/NC Lp

All the results in Srinivasan and Wang’s 1966 survey, and all the relevant
ones in Hoffman’s seminal Acta paper have been transferred to von Neumann
algebras with a faithful normal tracial state



Summary so far: The analytic principles in the classical theory are actually
far more algebraic in nature than was even anticipated in the 1960s. That
is, the results in the Hoffman et al algebraic approach to analyticity, all
extend in an unusually literal manner to Arveson’s class of noncommutative
algebras in von Neumann algebras with a faithful normal tracial state. And
in a way that merges the abstract Hp theory and vNAs/NC Lp

All the results in Srinivasan and Wang’s 1966 survey, and all the relevant
ones in Hoffman’s seminal Acta paper have been transferred to von Neumann
algebras with a faithful normal tracial state

What about if the von Neumann algebra M has no faithful normal tracial
state?



Section 3. Noncommutative Hardy spaces for general von Neumann alge-
bras

From early days it seemed like some of the above theory should be valid
for more general von Neumann algebras than those having a faithful normal
tracial state. For technical reasons though we should have some condition
on M ; and the relevant ones seem to be that M is σ-finite (i.e. countably
decomposable), or semifinite.



Section 3. Noncommutative Hardy spaces for general von Neumann alge-
bras

From early days it seemed like some of the above theory should be valid
for more general von Neumann algebras than those having a faithful normal
tracial state. For technical reasons though we should have some condition
on M ; and the relevant ones seem to be that M is σ-finite (i.e. countably
decomposable), or semifinite.

σ-finite: Every collection of mutually orthogonal projections is at most
countable. Equivalently, M has a faithful normal state (or even just a faithful
state); or has a faithful normal representation possessing a cyclic separating
vector. Any von Neumann algebra which is separably acting, or equivalently
has separable predual M∗, is σ-finite.

semifinite: 1 is a sum of mutually orthogonal finite projections, or equiva-
lently that every nonzero projection has a nonzero finite subprojection



• Ji, Ohwada, Saito, Xu, Labuschagne, Ueda, Bekjan, Sager, and ot-
hers have done quite a bit of work on subdiagonal algebras in σ-finite and
semifinite von Neumann algebras



• Ji, Ohwada, Saito, Xu, Labuschagne, Ueda, Bekjan, Sager, and ot-
hers have done quite a bit of work on subdiagonal algebras in σ-finite and
semifinite von Neumann algebras

• Perhaps the first thing to be said is that now there is no longer a
Fuglede-Kadison determinant. Thus we do not know how to make sense of
aspects like the characterization of outers above, the inner-outer factoriza-
tion theorem, Szegö’s theorem, etc

Nonetheless these authors have versions of much of the earlier theory in
the faithful normal tracial state case



• E.g. very recently Labuschagne make several significant advances in
the σ-finite case, most notably using Haagerup’s reduction theory to do
the Beurling invariant subspace theory (the easier Beurling theory in the
semifinite case had been done slightly earlier). The joint work I am describing
flowed out of this.
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• E.g. very recently Labuschagne make several significant advances in
the σ-finite case, most notably using Haagerup’s reduction theory to do
the Beurling invariant subspace theory (the easier Beurling theory in the
semifinite case had been done slightly earlier). The joint work I am describing
flowed out of this.

• Some main aspects that remained undone were the circle of results
around the F & M. Riesz type theorem, Gleason-Whitney, etc, and Ueda’s
beautiful duality and peak set results

• Indeed these all rely on Uedas peak set result. We are able to show
(later lecture) that Uedas peak set result is not provable in ZFC for all von
Neumann algebras, not even for M = l∞(R). So one cannot hope to do
much more than σ-finite von Neumann algebras, by the heuristic argument
that there may be nothing strictly between ‘countable’ and R

So let us assume that M is σ-finite.
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because we are now shielded from the worst terrors of von Neumann algebras,
but still are extremely general. (Indeed...).
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• What is Lp(M) now? Not so simple: Haagerup Lp-spaces, have to deal
with modular theory and the things Stefaan did in his Lecture 2 (modular
automorphism group, Radon-Nikodym derivative of weights, etc)

In our case the latter is h = dν
dτN
∈ L1(M) that appears everwhere, for a

fixed fns weight ν, and canonical trace τN on a crossed product N of M



So let us assume that M is σ-finite. We can all breathe a sigh of relief,
because we are now shielded from the worst terrors of von Neumann algebras,
but still are extremely general. (Indeed...).

• What is Lp(M) now? Not so simple: Haagerup Lp-spaces, have to deal
with modular theory and the things Stefaan did in his Lecture 2 (modular
automorphism group, Radon-Nikodym derivative of weights, etc)

In our case the latter is h = dν
dτN
∈ L1(M) that appears everwhere, for a

fixed fns weight ν, and canonical trace τN on a crossed product N of M

• What is Hp now? even worse: cant just take the closure of A in

the Lp(M) norm, have to take the closure of h
1
2pAh

1
2p. This makes things

extremely annoying and surprisingly technical.



• Another technical point arises in the definition of maximal subdiagonal
algebras, but this was sorted out by Quanhua Xu (2005), who also found
the analogue of Haagerup’s reduction theorem for the subalgebra

• Haagerup’s reduction theory: From a σ-finite von Neumann algebra M
one constructs a larger semifinite algebra R and a faithful normal conditional
expectation Φ : R → M . Inside R one may then construct an increasing
weak* dense sequence Rn of finite von Neumann algebras and expectations
Φn : R→ Rn with Φn ◦ Φm = Φm ◦ Φn = Φn when n ≥ m.



• Another technical point arises in the definition of maximal subdiagonal
algebras, but this was sorted out by Quanhua Xu (2005), who also found
the analogue of Haagerup’s reduction theorem for the subalgebra

• Haagerup’s reduction theory: From a σ-finite von Neumann algebra M
one constructs a larger semifinite algebra R and a faithful normal conditional
expectation Φ : R → M . Inside R one may then construct an increasing
weak* dense sequence Rn of finite von Neumann algebras and expectations
Φn : R→ Rn with Φn ◦ Φm = Φm ◦ Φn = Φn when n ≥ m.

• In the same manner R is constructed from M , one constructs a subal-
gebra Â of R from A, and Â is a subdiagonal algebra in R. The subalgebras
Ân = Â∩Rn are an increasing sequence of subdiagonal subalgebras of the
finite von Neumann algebras Rn, with the restriction of Ê to Rn acting
multiplicatively on Ân, and mapping Rn onto D̂ ∩ Rn. The union of the
Ân are weak* dense in Â.



The following helps with Kaplansky density type results in unital operator
spaces or operator systems.

Lemma Let M be a unital operator space. Let σ be any linear topology
on M weaker than the norm topology, e.g. the weak or weak* topology
(the latter if M is a dual space too). Let X be a subspace of M for which
Ball(X) is dense in Ball(M) in the topology σ. Then {x ∈ X : x+x∗ ≥ 0}
is dense in {x ∈M : x + x∗ ≥ 0} in the topology σ.

Proof Suppose that x ∈ M with x + x∗ ≥ 0. Then z = x + 1
n satisfies

z + z∗ ≥ 0 and

z + z∗ ≥ 2

n
≥ Cz∗z

for some constant C > 0. This implies that C2z∗z − C(z + z∗) + 1 =
(1−Cz)∗(1−Cz) ≤ 1. We may then approximate 1−Cz in the topology
σ by a net xt ∈ Ball(X), and so 1

C (1 − xt) → z with respect to σ. Since
2 − xt − x∗t ≥ 0 we have shown that z is in the closure of {x ∈ X :
x + x∗ ≥ 0} in the topology σ. Hence so is x. �



Theorem (Kaplansky density type) If A is a subdiagonal algebra in a
von Neumann algebra M with a faithful state, then Ball(A+A∗) is weak*
dense in Ball(M). Also, (A + A∗)+ is weak* dense in M+.

• Uses Haagerup’s reduction theory as explained a few slides back. It is
true for finite von Neumann algebras, and Haagerup’s reduction theory gives
a modus operandi to reduce to such.



Hilbert transform (in this generality due to Ji): roughly speaking for f ∈
Lp(M) gives f + iH(f ) ∈ Hp(A)
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• A σ-finite von Neumann algebra M has a convenient standard form.
Indeed as we said, a characterization of σ-finite algebras is the existence of
a normal faithful Hilbert space representation H possessing a fixed cyclic
and separating vector Ω. Then H together with Ω is a ‘standard form’
for M . By the universality of the standard form we may identify (H,Ω)

with (L2(M), h
1
2), and work with the copy of M living inside B(L2(M))

as multiplication operators, viewing h
1
2 as the fixed cyclic and separating

vector.
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Indeed as we said, a characterization of σ-finite algebras is the existence of
a normal faithful Hilbert space representation H possessing a fixed cyclic
and separating vector Ω. Then H together with Ω is a ‘standard form’
for M . By the universality of the standard form we may identify (H,Ω)

with (L2(M), h
1
2), and work with the copy of M living inside B(L2(M))

as multiplication operators, viewing h
1
2 as the fixed cyclic and separating

vector.

The above last many pages are some of the tools needed for our genera-
lization of Ueda’s peak set theorem



One formulation (without mentioning peak sets) of our generalization of
Ueda’s peak set theorem to subalgebras of σ-finite von Neumann algebras:

Generalized Ueda’s peak set theorem Suppose A is a subdiagonal subal-
gebra of a σ-finite von Neumann algebra M . For any singular state ϕ on
M , there is a sequence (pn) of projections in Ker (ϕ) with sup in M∗∗ in
A⊥⊥, and sup in M being 1.



One formulation (without mentioning peak sets) of our generalization of
Ueda’s peak set theorem to subalgebras of σ-finite von Neumann algebras:

Generalized Ueda’s peak set theorem Suppose A is a subdiagonal subal-
gebra of a σ-finite von Neumann algebra M . For any singular state ϕ on
M , there is a sequence (pn) of projections in Ker (ϕ) with sup in M∗∗ in
A⊥⊥, and sup in M being 1.

The proof is far too technical to describe here. It uses the tools described
above, together with the same basic strategy as Ueda’ proof of his case, but
becomes enormously more complicated technically. We will describe Ueda’
original proof tomorrow, emphasizing where real positivity comes in. I will
also explain why this is a theorem about noncommutative peak sets and
reformulate it as such, explaining what noncommutative peak sets are



• All the other consequences found by Ueda of his peak set theorem,
now go through in our more general case. It is convenient to phrase this as
follows:



If A is a weak* closed subalgebra of a von Neumann algebra M then we
say that A is an Ueda algebra if Ueda’s peak set theorem ‘holds’ for A.

Ueda’s ideas then immediately give the following three generalizations of
his beautiful results:



If A is a weak* closed subalgebra of a von Neumann algebra M then we
say that A is an Ueda algebra if Ueda’s peak set theorem ‘holds’ for A.

Ueda’s ideas then immediately give the following three generalizations of
his beautiful results:

Theorem Suppose that a weak* closed subalgebra A of a von Neumann
algebra M is an Ueda algebra. Write A∗s and A∗n for the set of restrictions
to A of singular and normal functionals on M . Each ϕ ∈ A∗ has a unique
Lebesgue decomposition relative to M : ϕ = ϕn + ϕs with ϕn ∈ A∗n and
ϕs ∈ A∗s. Moreover, ‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖.

Corollary Suppose that a weak* closed subalgebra A of a von Neumann
algebra M is an Ueda algebra. Then the predual A∗ of A is unique



Theorem (F. & M. Riesz type theorem) Suppose that a weak* closed
subalgebra A of a von Neumann algebra M is an Ueda algebra. If ϕ ∈M∗
annihilates A (that is, ϕ ∈ A⊥) then the normal and singular parts, ϕn and
ϕs, also annihilate A.

One may define an F & M Riesz algebra to be a weak* closed subalgebra
A of a von Neumann algebra M , such that if ϕ ∈ A⊥ then the normal
and singular parts, ϕn and ϕs, also annihilate A. The F & M type theorem
above says that any Ueda algebra is an F & M Riesz algebra.



Theorem (F. & M. Riesz type theorem) Suppose that a weak* closed
subalgebra A of a von Neumann algebra M is an Ueda algebra. If ϕ ∈M∗
annihilates A (that is, ϕ ∈ A⊥) then the normal and singular parts, ϕn and
ϕs, also annihilate A.

One may define an F & M Riesz algebra to be a weak* closed subalgebra
A of a von Neumann algebra M , such that if ϕ ∈ A⊥ then the normal
and singular parts, ϕn and ϕs, also annihilate A. The F & M type theorem
above says that any Ueda algebra is an F & M Riesz algebra.

By proofs in [B-Labuschagne] (but using the F & M type theorem above
instead of our original one) we have:

Corollary Suppose that A is an F & M Riesz or Ueda algebra in a von
Neumann algebra M such that A + A∗ is weak* dense in M . Any normal
functional on M is the unique Hahn-Banach extension of its restriction to
A+A∗, and in particular is normed by A+A∗. In addition, any Hahn-Banach
extension to M of a weak* continuous functional on A, is normal.



The last assertion of the Corollary is related to the Gleason-Whitney theo-
rem:

Lemma SupposeA is a weak* closed subalgebra of a von Neumann algebra
M . Then A+A∗ is weak* dense in M iff there is at most one normal Hahn-
Banach extension to M of any normal weak* continuous functional on A.

Corollary (Gleason-Whitney type theorem) Suppose that A is an F &
M Riesz or Ueda algebra in a von Neumann algebra M . Then A + A∗ is
weak* dense in M if and only if every normal functional on A has a unique
Hahn-Banach extension to M . This extension is normal.

Of course by our main theorem all of these hold when A is a maximal
subdiagonal subalgebra of a σ-finite von Neumann algebra M . Conversely
these properties characterize maximal subdiagonal subalgebras (in terms of if
and only if every normal functional on A has a unique normal Hahn-Banach
extension to M).



Summary of the last 3 pages: Any algebra satisfying the conclusions of
Ueda’s peak set theorem also has the F & M Riesz, Gleason-Whitney, unique
predual, Lebesgue decomposition, etc. It also satisfies the earlier Kaplansky
density theorem

The Lebesgue decomposition result generalizes the Lebesgue decomposi-
tion theorem for functionals on a von Neumann algebra, the unique predual
result simultaneously generalizes the Ando-Wojtaszczyk result that H∞(D)
has a unique predual, and the Dixmier-Sakai result that von Neumann alge-
bras have unique predual


