Corollary: If \(f: [a,b] \to \mathbb{R} \) is continuous, then its range \(f([a,b]) \) is an interval of form \([m_1, m_2]\).

Proof: By max-min theorem, if minimum \(m_1 \), maximum \(m_2 \) in \(f([a,b]) \). If \(m_1 < z < m_2 \) then by IVT, \(\exists c \in [a,b] \) s.t. \(f(c) = z \) So \(z \in f([a,b]) \). Thus \(f([a,b]) = [m_1, m_2] \)

Chapter 6 Differentiation

Section 25 The Derivative

Def: (Cal.1) If \(f: (a,b) \to \mathbb{R} \), \(c \in (a,b) \) and

\[
\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L \quad \text{then we say} \quad f \text{ is differentiable at } c,
\]

and \(f'(c) = L \). If \(f \) is differentiable at \(c \), \(\forall c \in (a,b) \), we say \(f \) is differentiable on \((a,b)\)

\(f: (a,b) \to \mathbb{R} \) in this chapter \(a < b \), \(c \in (a,b) \)

\[
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \quad \text{if this exists}
\]

Theorem:

If \(f \) is differentiable at \(c \) then \(f \) is continuous at \(c \).
Proof: \[\lim_{x \to c} f(x) = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right) (x - c) + f(c) \]

Rules for limits:
\[\lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right) = f'(c) \]
\[\lim_{x \to c} (x - c) = 0 \]
\[\lim_{x \to c} f(c) = f(c) \]

Thus \(f \) is continuous at \(c \).

Ex: Let \(f(x) = |x| \). Where is \(f \) differentiable?

Soh: Let's show \(f \) is not differentiable at \(0 \). We will show
\[\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} \text{ does not exist.} \]

To this, note \[1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \to 0 \], but if \(g(x) = \frac{|x|}{x} \), then \(g(\frac{1}{n}) = 1 \to 1 \)

Also \[-1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \ldots \to 0 \], but if \(g(-\frac{1}{n}) = \frac{-1}{n} \), then \(g(-\frac{1}{n}) = -1 \to -1 \)

So, by "Another consequence" on 10/27/04,
\[\lim_{x \to 0} \frac{|x|}{x} \text{ does not exist.} \]

If \(c \neq 0 \), \(f(x) \) is differentiable at \(c \).
For example, on \((0, \infty)\), \(f(x) = x \) which has derivative 1.

* Theorem: (Cal. I)

Suppose \(f, g \) are differentiable at \(c \), then

(sum rule) \(f + g \) is differentiable at \(c \), and \((f + g)'(c) = f'(c) + g'(c) \)

(constant multiple) \(kf \) is differentiable at \(c \), and \((kf)'(c) = kf'(c) \) \(k \) a constant

(product rule) \(fg \) is differentiable at \(c \), and \((fg)'(c) = f'(c)g(c) + f(c)g'(c) \)

(quotient rule) \(f/g \) is differentiable at \(c \), if \(g(c) \neq 0 \) and \((f/g)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2} \)
Proof: \[\lim_{x \to c} \frac{f(x) + g(x) - (f(c) + g(c))}{x - c} = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c} \right) \]

\[= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = f'(c) + g'(c) \]

The proof for the product rule is similar, and is left as easy exercise.

Product Rule: \[\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \]

\[= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x) + f(c)g(x) - f(c)g(c)}{x - c} \]

\[= \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} \cdot g(x) + \frac{g(x) - g(c)}{x - c} \cdot f(c) \right] = f'(c)g(c) + f(c)g'(c) \]

Quotient Rule: \[\lim_{x \to c} \frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} = \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \]

\[= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x) + f(c)g(x) - f(c)g(c)}{g(x)g(c)(x - c)} \]

\[= \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \frac{g(x)}{g(c)} - \frac{g(x) - g(c)}{x - c} \frac{f(c)}{g(c)} \right) = \frac{f(c)g(c) - g'(c)f(c)}{(g(x))^2} \]

Exercise:
Theorem: (The Chain Rule)

Let \(f : (a, b) \to \mathbb{R} \), and \(g : (m, n) \to \mathbb{R} \), where \(f((a, b)) \subseteq (m, n) \).

If \(c \in (a, b) \), and \(f \) is differentiable at \(c \), and \(g \) is differentiable at \(f(c) \), then \(g \circ f \) is differentiable at \(c \), and

\[
(g \circ f)'(c) = g'(f(c)) f'(c)
\]

Proof: We need to show:

\[
\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c} = g'(f(c)) f'(c)
\]

By Theorem 20.8, it is enough to show that if \((S_n) \) is a sequence, \(S_n \to c \), \(S_n \neq c \), then

\[
\frac{g(f(S_n)) - g(f(c))}{S_n - c}
\]

converges to \(g'(f(c)) f'(c) \)

We consider two cases:

Case 1:

\(f(S_n) = f(c) \) for infinite many numbers \(n \in \mathbb{N} \).

Then \(f'(c) = \lim_{n \to \infty} \frac{f(S_n) - f(c)}{S_n - c} = 0 \), since \(f(S_n) - f(c) = 0 \) for infinitely many values of \(n \), \(n \in \mathbb{N} \).

(Suppose \(f(S_{n_k}) = f(c) \) for all \(k \in \mathbb{N} \), \(n_1 < n_2 < \ldots \))

Then the subsequence \(\frac{f(S_{n_k}) - f(c)}{S_{n_k} - c} = 0 \to 0 \), so by 19.4, text

\[
\lim_{n \to \infty} \frac{f(S_n) - f(c)}{S_n - c} = 0
\]

On the other hand,

\[
\frac{g(f(S_{n_k})) - g(f(c))}{S_{n_k} - c} = \frac{g(f(c)) - g(f(c))}{S_{n_k} - c} = 0 \to 0
\]
If \(S_n \) is such that \(f(S_n) \neq f(c) \), then

\[
\frac{g(f(S_n)) - g(f(c))}{S_n - c} = \frac{g(f(S_n)) - g(f(c))}{f(S_n) - f(c)} \cdot \frac{f(S_n) - f(c)}{S_n - c} \rightarrow g'(f(c)) \cdot f'(c),
\]

by Theorem 20.8, applied to

\[
\lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} \quad \text{and to} \quad \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.
\]

1/10/04 Recall last time

Case 1:

\[\exists \text{ infinitely many } n \in \mathbb{N} \text{ s.t. } f(S_n) = f(c) \]

Let \(\{n \in \mathbb{N} : f(S_n) = f(c)\} = \{n_1, n_2, n_3, \ldots\} \), \(n_1 < n_2 < n_3 \ldots \)

Subsequence \(S_{n_k} \rightarrow c \) (by 19.4 text). Thus

\[
\frac{f(S_{n_k}) - f(c)}{S_{n_k} - c} \rightarrow \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c), \quad \text{by 20.8} \quad \star
\]

Since \(f(S_{n_k}) = f(c) \), \(f'(c) = 0 \).

So we need to show \(a_n = \frac{g(f(S_n)) - g(f(c))}{S_n - c} \rightarrow 0 \)

Simple principle for sequences:

If \((a_n)\) is any sequence, and if \(J \) and \(K \) are two subsets of \(\mathbb{N} \) which are disjoint (\(J \cap K = \emptyset \)) and \(J \cup K = \mathbb{N} \), and if \(J \) is infinite, and if \(a_n = 0 \ \forall n \in K \), and if \(J = \{m_1, m_2, m_3, \ldots\}, m_1 < m_2 < m_3 < \ldots \), and if \(\lim_{i \to \infty} a_{m_i} = 0 \), then

\[\lim_{n \to \infty} a_n = 0 \]
Picture: \(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, \ldots \)

J. \(\frac{a_1}{2} \) \(\frac{a_2}{2} \) \(\frac{a_3}{2} \) \(\frac{a_4}{2} \) \(\frac{a_5}{2} \) \(\frac{a_6}{2} \) \(\frac{a_7}{2} \) \(\frac{a_8}{2} \) \(\ldots \) \(\rightarrow 0 \)

2 parts \(K \) break into \(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, \ldots \)

Conclusion: \(a_n \rightarrow 0 \) as \(n \rightarrow \infty \)

In our case, \(K = \{n \in \mathbb{N} : f(S_n) = f(c)\} = \{n_1, n_2, n_3, \ldots \} \) above

Clearly \(a_n = \frac{g(f(S_n)) - g(f(c))}{S_n - c} = 0 \quad \forall n \in K \)

If \(J = \mathbb{N} \setminus K = \{m_1, m_2, m_3, \ldots \}, m_1 < m_2 < m_3 < \ldots \), then

\[S_{m_i} \rightarrow c \text{ as } i \rightarrow \infty \quad (\text{by 19.4}) \]

and

\[a_{m_i} = \frac{g(f(S_{m_i})) - g(f(c))}{S_{m_i} - c} = \frac{g(f(S_{m_i}) - g(f(c) \cdot f(S_{m_i}) - f(c))}{S_{m_i} - c} \quad \frac{S_{m_i} - c}{f'(c)} = \frac{S_{m_i} - c}{f'(c)} \]

To see (**), let \(t_i = f(S_{m_i}) \), then \(t_i \rightarrow f(c) \), since \(f \) is continuous at \(c \), and using 20.8

Thus \(\frac{g(t_i) - g(f(c))}{t_i - c} \rightarrow \lim_{y \rightarrow f(c)} \frac{g(y) - g(f(c))}{y - f(c)} = g'(f(c)) \), by 20.8 (very similar to *)

By "simple principle" above, \(a_n \rightarrow 0 \) as required. This ends proof of Case 1.
Case 2: If only finitely many \(n \in \mathbb{N} \) s.t. \(f(S_n) = f(c) \)

We need to show that

\[
q_n = \frac{g(f(S_n)) - g(f(c))}{S_n - c} \to g'(f(c))f'(c), \text{ just as before}
\]

We don't care about first few terms of a sequence (fact 7).
Thus we can assume \(f(S_n) \neq f(c) \) \(\forall n \in \mathbb{N} \)

The rest of the proof is almost identical to last part of
Step 1. Since \(S_n \to c \) as \(n \to \infty \) (by 19.4)

and \(q_n = \frac{g(f(S_n)) - g(f(c))}{S_n - c} = \frac{g(f(S_n)) - g(f(c))}{f(S_n) - f(c)} \cdot \frac{f(S_n) - f(c)}{S_n - c} \to g'(f(c))f'(c) \)

\(\Rightarrow g'(f(c))f'(c) \)

by same argument as:*
Section 26

THE Mean Value THEOREM

Theorem (1st derivative Cal. I test)
If \(f: (a, b) \to \mathbb{R} \) is differentiable, and if \(c \in (a, b) \) and if \(f(x) \) has a local maximum or local minimum at \(c \), then \(f'(c) = 0 \).

Proof: By shrinking \((a, b) \), we can remove the word "local". Suppose \(f(c) \) is a maximum (leave minimum case as exercise). Then

\[
\lim_{{x \to c^+}} \frac{f(x)-f(c)}{x-c} \leq 0 \quad \text{(look at 20.12, with } a = 0) \]

Similarly

\[
\lim_{{x \to c^-}} \frac{f(x)-f(c)}{x-c} \geq 0 \quad \text{(both numerator & denominator are } \leq 0) \]

But

\[
\lim_{{x \to c^-}} = \lim_{{x \to c^+}} = \lim_{{x \to c}} \quad \text{if the limit exists, (Ex. 20.18)}
\]

so

\[
\lim_{{x \to c}} \frac{f(x)-f(c)}{x-c} = 0 = f'(c)
\]

11/12/04

(Rolle's Theorem):

If \(f: [a, b] \to \mathbb{R} \) is continuous, differentiable on \((a, b)\) and \(f(a) = f(b) = 0 \) then \(\exists \ c \in (a, b) \) s.t. \(f'(c) = 0 \).

Proof:

Case 1: \(f \) is constant. This case is obvious. (The derivative of a constant is 0)
\[h'(c) = f'(c) \frac{b - a}{b - a}, \text{ so } h'(c) = 0. \]
Example: Prove Bernoulli's inequality

\[(1+x)^n \geq 1+nx, \forall n \in \mathbb{N}, \forall x \geq 0\]

Solution: Let \(f(t) = (1+t)^n, \forall t \in [0,x]\)

By MVT applied to \(f\) on \([0,x]\), \(\exists c \in (0,x)\) s.t.

\[f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{(1-x)^n}{x}\]

But \(f'(c) \text{ by chain rule} = n(1+c)^{n-1}\), so \(\frac{(1-x)^n}{x} \geq n(1+c)^{n-1} \Rightarrow n^{n-1}\)

Multiplying by \(x\) and adding 1 gives \((1+x)^n \geq nx + 1\)

Fact 1: (Calculus)

If \(f'(x) = 0\), \(\forall x \in (a,b)\) then \(f(x)\) is a constant on \((a,b)\).

Proof

If \(a < x < y < b\), then by MVT applied to \(f\) on \([x,y]\), \(\exists c \in (x,y)\) s.t.

\[f(y) - f(x) = f'(c)(y - x) = 0\]

Thus \(f(x) = f(y), \forall x < y \text{ in } (a,b)\) So \(f\) constant.

Fact (Calculus)

If \(f'(x) = g'(x), \forall x \in (a,b)\), then \(\exists c \text{ s.t.}\)

\[f(x) = g(x) + C, \forall x \in (a,b)\]

Proof

Let \(h(x) = f(x) - g(x)\). Then \(h'(x) = f'(x) - g'(x), \forall x \in (a,b)\), so by last fact, \(\exists c \text{ s.t.} h(x) = C\). Thus \(f(x) = g(x) + C\)
Fact (cal.1)

If $f'(x) > 0 \ \forall x \in (a, b)$ then f is strictly increasing on (a, b)

$x < y \Rightarrow f(x) < f(y)$

If $f'(x) > 0 \ \forall x \in (a, b)$ then f is increasing on (a, b)

$x \leq y \Rightarrow f(x) \leq f(y)$

If $f'(x) < 0 \ \forall x \in (a, b)$ then f is strictly decreasing on (a, b)

$x < y \Rightarrow f(x) > f(y)$

If $f'(x) < 0 \ \forall x \in (a, b)$ then f is decreasing on (a, b)

$x \leq y \Rightarrow f(x) \geq f(y)$

Proof:

I'll just do first, you can do others.

If $f'(x) > 0$ on (a, b), and if $a < x < y < b$, then by MVT

on $[x, y]$, $f(y) - f(x) = f'(c)(y-x) > 0$ for some $c \in (x, y)$

Thus $f(y) > f(x)$

Final result in this section:

The inverse function theorem (cal.2)

If $f: (a, b) \to \mathbb{R}$, and if $f'(x) \neq 0 \ \forall x \in (a, b)$ then

f is one-to-one on (a, b), $f((a, b)) = (c, d)$ for numbers c, d

and

$(f^{-1})'(y) = \frac{1}{f'(x)} \ \forall y \in (c, d), \ y = f(x)$

$f((a, b)) = \{f(x): x \in (a, b)\}$

Read handout!
Instructions. Show all working and reasoning, the points are almost all for logical, complete reasoning. [Approximate point values are given, total = 100 points plus 15 bonus points].

1. Prove that a decreasing bounded sequence \((a_n)\) converges to \(\inf_n a_n\).

Let \(\alpha = \inf_n a_n\), and suppose \(\varepsilon > 0\) is given and \(a_n < \alpha + \varepsilon\).

Then \(\alpha - \varepsilon < a_n \leq \alpha < a_n < \alpha + \varepsilon + \varepsilon\).

So \(\alpha - \varepsilon < a_n < \alpha + \varepsilon + \varepsilon\).

2. (a) What is the definition of a Cauchy sequence?

(b) Suppose that \((s_n)\) is a sequence with \(|s_{n+1} - s_n| \leq \frac{1}{2^n}\) for all \(n \in \mathbb{N}\). Show that \((s_n)\) is a Cauchy sequence.

(c) Is the sequence in (b) convergent? Why?

\[(a)\] \(\forall \varepsilon > 0 \exists N \text{ s.t. } m, n \geq N \Rightarrow |a_m - a_n| < \varepsilon.\)

\[(b)\] \(|s_m - s_n| = |s_m - s_{m-1} + s_{m-1} - s_{m-2} + \ldots + s_{n+1} - s_n| \\
\leq |s_m - s_{m-1}| + |s_{m-1} - s_{m-2}| + \ldots + |s_{n+1} - s_n| \\
\leq \frac{1}{2^{m-1}} + \frac{1}{2^{m-2}} + \ldots + \frac{1}{2^n} \quad \text{(Geometric series)} \\
< \frac{1}{2^{m-1}} \cdot 2 = \frac{1}{2^{m-1}} \to 0 \text{ as } n \to \infty.\]

\[(c)\] Yes, it is Cauchy.

3. Here \(f : D \to \mathbb{R}\), and \(c\) is an accumulation point of \(D\). Mark each statement True or False. If it is true, give a simple reason. If it is false, give a counterexample (you don’t need to show that it is a counterexample).

(a) Every sequence of real numbers has a convergent subsequence.

(b) If \(\lim_{x \to c} f(x) = L\) then there is a sequence \((s_n)\) in \(D\) which converges to \(c\), but \((f(s_n))\) does not converge to \(L\).

(c) If \(f : D \to \mathbb{R}\) is continuous and bounded on \(D\), then \(f(x)\) has a maximum and a minimum value on \(D\).

\[(a)\] False, consider the sequence \(1, 2, 3, 4, \ldots.\)

\[(b)\] True, this is the contrapositive of \(20.8.\)

\[(c)\] False, consider \(f(x) = x\) on \((0, 1)\).
4. Suppose that \(f : (a, b) \to \mathbb{R} \), \(g : (a, b) \to \mathbb{R} \), \(L \in \mathbb{R} \), and \(a < c < b \).

(a) Prove that if \(\lim_{x \to c} f(x) = L \) then whenever \((s_n) \) is a sequence in \((a, b) \setminus \{c\} \) with \(\lim_n s_n = c \), then \(\lim_n f(s_n) = f(c) \).

(b) Prove that if \(\lim_{x \to c} f(x) = L \) and \(\lim_{x \to c} g(x) = M \), then \(\lim_{x \to c} f(x)g(x) = LM \).

(c) Prove that if \(\lim_{x \to c} f(x) = 0 \), and if there is a constant \(M \) such that \(|g(x)| \leq M \) for all \(x \in (a, b) \), then \(\lim_{x \to c} f(x)g(x) = 0 \).

5. (a) Give the \(\varepsilon - \delta \) definition for a function \(f : (a, b) \to \mathbb{R} \) to be continuous at a point \(c \in (a, b) \).

(b) List as many other conditions as you know that are equivalent to \(f : (a, b) \to \mathbb{R} \) being continuous at \(c \in (a, b) \).

(c) Using the \(\varepsilon - \delta \) definition, show that the function \(x^2 + 1 \) is continuous at \(x = -1 \).
Chapter 7
Integration
Section 29 The Riemann Integral

We define and study the Riemann Integral
\[\int_a^b f(x) \, dx \] (or \[\int_a^b f \, dx \]) of a function \(f: [a, b] \to \mathbb{R} \) which is bounded (i.e., there exist constants \(m, M \) s.t. \(m \leq f(x) \leq M \) \(\forall x \in [a, b] \)).

Recall from Calculus I, that a partition \(P \) of \([a, b]\) is a set \(P = \{x_0, x_1, x_2, \ldots, x_n\}\) where \(a = x_0 < x_1 < x_2 < \ldots < x_n = b \).

Write \(\mathcal{P} \) for the set of all partitions of \([a, b]\).

The upper sum \(U(f, P) = \sum_{k=1}^{n} M_k \Delta x_k \)

lower sum \(L(f, P) = \sum_{k=1}^{n} m_k \Delta x_k \), where

\[\Delta x_k = x_k - x_{k-1} \]

\[m_k = \inf \{ f(x) : x \in [x_{k-1}, x_k] \} \]

\[M_k = \sup \{ f(x) : x \in [x_{k-1}, x_k] \} \]

Note:

\[m(b-a) = \sum_{k=1}^{n} m_k \Delta x_k \leq \sum_{k=1}^{n} M_k \Delta x_k = L(f, P) \leq U(f, P) = \sum_{k=1}^{n} M_k \Delta x_k \leq M(b-a) \]

From \(\mathcal{P} \), \(\{ L(f, P) : P \in \mathcal{P} \} \) and \(\{ U(f, P) : P \in \mathcal{P} \} \) are bounded, so have inf and sup's.
We that is Riemann case write

\[L(f, P) \leq L(f, p), \quad p \in P \]

Since \(\neq \) is not

A

\[\leq a \]

then \(b < a \)

\[M \forall x \in Q \]

\[Q \subseteq P \]

Ex 0 1 0 1

\[Q \quad P \text{then} \quad Q \]
Proof: Note \(Q \) is simply \(P \) with a few points added.

Case 1: \(Q \) is \(P \) with one point added.

So \(P = \{x_0, x_1, x_2, \ldots, x_n\} \), \(Q = \{x_0, x_1, x_2, \ldots, x_{k-1}, x^*, x_k, \ldots, x_n\} \)

\((x^* \text{ is point added})\)

\[L(f, P) = \frac{1}{n} \sum_{i=1}^{n} m_i \Delta x_i = \left(\frac{1}{k-1} \sum_{i=1}^{k-1} m_i \Delta x_i \right) + m_k \Delta x_k + \left(\frac{1}{n} \sum_{i=k+1}^{n} m_i \Delta x_i \right) \]

Now \(m_k = \inf \{ f(x) : x \in [x_{k-1}, x_k] \} \)

so \(m_k \Delta x_k = \inf \{ f(x) : x \in [x_{k-1}, x_k] \} \left((x^* - x_{k-1}) + (x_k - x^*) \right) \)

\[= \inf \{ f(x) : x \in [x_{k-1}, x_k] \} (x^* - x_{k-1}) + \inf \{ f(x) : x \in [x_{k-1}, x_k] \} (x_k - x^*) \]

\[\leq \inf \{ f(x) : x \in [x_{k-1}, x^*] \} (x^* - x_{k-1}) + \inf \{ f(x) : x \in [x^*, x_k] \} (x_k - x^*) \]

(using this fact \(S_1 \subseteq S_2 \subseteq \mathbb{R} \Rightarrow \inf(S_2) \leq \inf(S_1) \))

Hence \(L(f, P) \leq \left(\frac{1}{k-1} \sum_{i=1}^{k-1} m_i \Delta x_i \right) + \inf \{ f(x) : x \in [x_{k-1}, x^*] \} (x^* - x_{k-1}) \)

\[+ \inf \{ f(x) : x \in [x^*, x_k] \} (x_k - x^*) + \left(\frac{1}{n} \sum_{i=k+1}^{n} m_i \Delta x_i \right) \]

\[= L(f, Q) \]

By a similar argument, \(U(f, Q) \leq U(f, P) \).

By \(\circ \), \(L(f, Q) \leq U(f, Q) \).

Case 2: Use case 1 repeatedly, for example, if \(Q \) is \(P \) with 2 points \(x^* \) and \(y^* \) added.

Let \(Q' = PU \{x^*\} \), then by case 1 applied twice,

\[L(f, P) \leq L(f, Q') \leq L(f, Q) \leq U(f, Q) \]

By case 1 applied twice more, \(U(f, Q) \leq U(f, Q') \leq U(f, Q) \)
Corollary: \(P, Q \in \mathcal{P} \Rightarrow L(f, P) \leq U(f, Q) \)

proof: Let \(R = P \cup Q \), then \(R \) refines both \(P \) and \(Q \), and so by Lemma, \(L(f, P) \leq L(f, R) \leq U(f, R) \leq U(f, Q) \).

Corollary 2: For any bounded function \(f: [a, b] \rightarrow \mathbb{R} \), \(U(f) \geq L(f) \).

proof: By last corollary we have
\[
L(f) = \sup \{ L(f, P) : P \in \mathcal{P} \} \leq U(f, Q), \text{ if } Q \in \mathcal{P}
\]

\(L(f) \) is a lower bound for \(\{ U(f, Q) : Q \in \mathcal{P} \} \).

Taking infimum over \(Q \), \(L(f) \leq U(f) \).

Smallest lower bound of the \(U(f, Q) \).