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I. The injective envelope.

A ternary ring of operators or TRO is a closed

subspace Z of B(K, H) (or of a C∗-algebra),

with ZZ?Z ⊂ Z.

Example: pA(1− p), for a C∗-algebra A and a

projection p in A (or in M(A)).

A subTRO of a TRO Z is a closed subspace

Y with Y Y ?Y ⊂ Y .

A triple morphism between TROs is a linear

map with T (xy∗z) = T (x)T (y)∗T (z) ∀x, y, z.

TROs behave exactly like C*-algebras, and triple

morphisms behave exactly like ∗-homomorphisms.
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An operator space Z is injective if for any c.

contractive u : X → Z and for any operator

space Y containing X as a closed subspace,

there exists a c. contractive extension û : Y →
Z such that û|X = u.

Theorem (Wittstock) If H and K are Hilbert

spaces then B(K, H) is an injective operator

space.

A map Φ : X → X is idempotent if Φ ◦Φ = Φ

Exercise: Show that an operator space is in-

jective iff it is linearly c. isometric to the range

of a completely contractive idempotent map

on B(H), for some Hilbert space H.
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An extension of an op. space X is an op. space

Y , together with a linear completely isometric

map i : X → Y .

Say Y is a rigid extn. of X if IY is the only lin-

ear completely contractive map Y → Y which

restricts to the identity map on i(X).

Say Y is an essential extension of X if whenever

u : Y → Z is a c. contractive map into another

operator space Z such that u ◦ i is a complete

isometry, then u is a complete isometry.

Say that (Y, i) is an injective envelope of X if Y

is injective, and if there is no injective subspace

of Y containing i(X).
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Lemma Let (Y, i) be an extension of an op-

erator space X such that Y is injective. The

following are equivalent:

(i) Y is an injective envelope of X,

(ii) Y is a rigid extension of X,

(iii) Y is an essential extension of X.

Lemma If (Y1, i1) and (Y2, i2) are two injective

envelopes of X, then there exists a surjective

c. isometry u : Y1 → Y2 such that u ◦ i1 = i2.

Theorem If an operator space X is contained

in an injective operator space W , then there is

an injective envelope Y of X with X ⊂ Y ⊂ W .
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Hence every operator space has an injective

envelope. We write it as (I(X), j), or I(X) for

short. It is essentially unique by the above.

If X is a unital operator space, then I(X) can

be taken to be a unital C∗-algebra, and j is a

unital map.

This is because if IH ∈ X ⊂ B(H), then by

the above there is an injective envelope R of

X with X ⊂ R ⊂ B(H), and a c. contractive

idempotent map Φ from B(H) onto R. By a

fact from Lecture 1, Φ is completely positive,

and by the Choi-Effros result, R is a C∗-algebra

with a new product.
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An important construction:

Fix an operator space X ⊂ B(H), and consider

the Paulsen system S(X) ⊂ M2(B(H))

As we said earlier, there is a completely positive

idempotent map Φ on M2(B(H)) whose range

is an injective envelope I(S(X)) of S(X). Also,

I(S(X)) is a unital C∗-algebra in a new product

Write p and q for the canonical projections IH⊕
0 and 0 ⊕ IH. Since Φ(p) = p and Φ(q) = q,

it follows from a fact at the end of Lecture

1 that Φ(px) = pΦ(x), Φ(xp) = Φ(x)p, etc.

That is, Φ is ‘corner-preserving’.

The ‘1-2-corner’ P of Φ is an idempotent map

on B(H).
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By definition of the new product, it is clear

that p and q are complementary projections in

the C∗-algebra I(S(X)). With respect to these

projections, I(S(X)) may be viewed as consist-

ing of 2×2 matrices. Let Ikl(X), or simply Ikl,

denote its ‘k-l-corner’, for k, l = 1,2.

Thus I11 is the unital C∗-algebra pI(S(X))p,

I22 is (1− p)I(S(X))(1− p), and

I12 = pI(S(X))(1− p) =Ran(P ).

Write J for the canonical map from X into

I12(X). We have:

X ↪→ S(X) =

[
C X

X? C

]

↪→ I(S(X)) =

[
I11(X) I12(X)
I21(X) I22(X)

]
.
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Note that the ‘corner’ Z = I12(X) is a I11-I22-

bimodule. It is also a TRO, since

ZZ?Z ⊂ Z, ZZ? ⊂ I11, and Z?Z ⊂ I22.

Thus X inherits a natural C∗-algebra valued

‘inner product’

〈x, y〉 = j(x)∗j(y) ∈ I22, x, y ∈ X

We call this the ‘Shilov inner product’
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Theorem (Hamana–Ruan) If X is an operator

space, then Z = I12(X) is an injective envelope

of X.

Proof We suppose that X ⊂ B(H), and we

use the notation established above. Clearly

Z = pA(1 − p) is injective. Let v : Z → Z

be a completely contractive map extending the

identity map on J(X). We need to show that

v = IZ. By Paulsen’s lemma v gives rise to a

canonically associated map on S(Z), the latter

viewed as a subset of A. Since A is injective, we

may extend further to a complete contraction

Ψ from A to itself. Note that the restriction of

Ψ to S(X) is the identity map. By the ‘rigidity

property’, both Ψ and v are the identity map.

�
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Corollary (Hamana–Ruan) An operator space

X is injective if and only if X ∼= pA(1 − p)

completely isometrically, for a projection p in

an injective C∗-algebra A.

Proof If X is injective, then in notation of the

last few slides,

I(X) = pI(S(X))(1− p)

But if X is injective then it equals its injective

envelope �

Remark. The C∗-algebras I11, I22, I(S(X))

do not depend on a particular embedding X ⊂
B(H).
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Corollary (Hamana–Kirchberg–Ruan) A sur-

jective complete isometry between TROs is a

triple morphism.

Proof A surjective complete isometry u : X →
Y gives, by Paulsen’s lemma, a c. isometric

unital isomorphism between the operator sys-

tems S(X) and S(Y ).

This isomorphism extends, by an earlier result,

to a completely isometric unital surjection θ

between I(S(X)) and I(S(Y )).

By a fact at the end of Lecture 1, θ is a ∗-
isomorphism.

Since θ(1⊕0) = 1⊕0, θ is ‘corner-preserving’.

Since the 1-2-corner θ12 of θ is the restric-

tion of θ to a subtriple, it is a triple morphism.

However, θ12 = u on the copy of X. �
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The triple envelope or noncommutative Shilov
boundary

X  T (X), a TRO or C*-module

The triple envelope of an op. space X is a
pair (T (X), j) consisting of a TRO T (X) and
a c. isometry j : X → T (X) such that for any
other TRO Z and c. isometry i : X → Z, there
exists a triple morphism θ : Z → T (X) such
that θ ◦ i = j.

(Here we are only considering c. isometries i :
X → Z s.t. @ nontrivial subTRO of Z contain-
ing i(X))

So T (X) is the smallest TRO that containing
X.

Theorem (Hamana) If (I(X), j) is an injec-
tive envelope of X, then the smallest subTRO
of I(X) containing j(X), is a triple envelope
of X. So can take T (X) ⊂ I(X).

13



II. The left multiplier algebra of an opera-

tor space X

X  M`(X), a unital operator algebra

X  A`(X), a unital C*-algebra

These algebras consist of operators on X, and

A`(X) is a C∗-subalg. of M`(X)

By an operator algebra we mean a closed sub-

algebra of B(H). It is unital if it has an identity

of norm 1 (or equiv. IH ∈ A).

Theorem (B-Ruan-Sinclair) Up to completely

isometric isomorphism, unital operator alge-

bras are precisely the operator spaces A which

is a unital algebra whose product satisfies ‖ab‖n ≤
‖a‖n‖b‖n for all a, b ∈ Mn(A), n ∈ N.
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Examples

(1) If A is an approx. unital operator algebra,

then Ml(A) is the usual left multiplier al-

gebra LM(A). If A is a C*-algebra, then

Al(A) = M(A).

(2) If E is a Banach space, then Ml(MIN(E))

coincides with the classical ‘function multi-

plier algebra’ M(E), whereas Al(MIN(E))

is the classical ‘centralizer algebra’, studied

in the 60s and 70s.

(3) If Z is a right Hilbert C∗-module, then we

shall show later that Ml(Z) and Al(Z) are

respectively the algebras of bounded right

module maps, and adjointable maps, on Z.
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• AlthoughMl(X) and Al(X) are defined purely
in terms of the matrix norms and vector
space structure on X, they often encode
‘operator algebra structure’.

• Operator spaces with trivial multiplier al-
gebras are exactly the spaces lacking ‘op-
erator algebraic structure’ in a sense which
one can make precise.

We define a left multiplier of X to be a linear
map u : X → X such that there exists a Hilbert
space H, an S ∈ B(H), and a linear complete
isometry σ : X → B(H) with σ(ux) = Sσ(x) for
all x ∈ X.

The multiplier norm of u, is the infimum of ‖S‖
over all possible H, S, σ as above. We define
Ml(X) to be the set of left multipliers of X.

Notice that we may replace the B(H) in the
definition of Ml(X) by an arbitrary C*-algebra.
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Set C2(X) = M2,1(X)

For a linear u : X → X, define τu : C2(X) →
C2(X) to be the map u⊕ IX; that is:

τu

([
x
y

])
=

[
u(x)

y

]
, x, y ∈ X.

‘Left multipliers’ are best viewed as a sequence

of equivalent definitions, as in the following

theorem. To explain the notation in this result:

in (iii)–(v), we are viewing X ⊂ T (X) ⊂ I(X) ⊂
I(S(X)) as above. Here T (X) is the triple

envelope.
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Theorem (B, B-Effros-Zarikian, B-Paulsen)

Let u : X → X be a linear map. The follow-

ing are equivalent:

(i) u is a left multiplier of X with multiplier

norm ≤ 1.

(ii) τu is completely contractive.

(iii) There exists an a ∈ I11(X) of norm ≤ 1,

such that u(x) = ax for all x ∈ X.

(iv) u is the restriction to X of a contr. right

module map a on T (X) with a(X) ⊂ X.

(v) u is the restriction to X of a contr. right

module map a on a C∗-module Z contain-

ing X, with a(X) ⊂ X.
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(vi) [〈u(xi)|u(xj)〉] ≤ [〈xi|xj〉], for all n ∈ N and

x1, . . . , xn ∈ X.

(The matrices in (v) are indexed on rows by i,

and on columns by j.



The ‘inner product’ in (v) is the Shilov inner

product.

Lets just prove one of the implications here:

(i) ⇒ (ii) Let σ, S, H be chosen as in the defi-

nition of Ml(X) above. Then for x, y ∈ X, we

have∣∣∣∣∣
∣∣∣∣∣τu

([
x
y

])∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
[

σ(ux)
σ(y)

]∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
[

S 0
0 I

] [
σ(x)
σ(y)

]∣∣∣∣∣
∣∣∣∣∣

≤ max{‖S‖,1}
∣∣∣∣∣
∣∣∣∣∣
[

x
y

]∣∣∣∣∣
∣∣∣∣∣ .

Thus ‖τu‖ ≤ max{‖S‖,1}. A similar argument

shows that ‖τu‖cb ≤ max{‖S‖,1}. Then (ii)

follows by the definition of the ‘multiplier norm’.
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We define matrix norms on M`(X) by

Mn(M`(X)) ∼= M`(Mn(X))

Theorem If X is an operator space, then the

‘multiplier norms’ defined above are norms. With

these matrix norms Ml(X) is an operator al-

gebra.

Idea of proof The last theorem shows that

Ml(X) ∼= {a ∈ I11(X) : aX ⊂ X}, a subalgebra

of the C*-algebra I11(X). �

The inclusion map from Ml(X) to CB(X) is a

one-to-one c. contractive homomorphism.
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We write Al(X) for the C*-algebra Ml(X) ∩
Ml(X)∗.

The operators in Al(X) are called left adjointable

multipliers

Theorem Let X be an operator space, and

u : X → X a linear map. The following are

equivalent:

(i) u ∈ Al(X).

(ii) There exists an a ∈ I11(X), s.t. u(x) = ax

for all x ∈ X, and s.t. a∗X ⊂ X.

(iii) u is the restriction to X of an adjointable

module map a on T (X) with a(X) ⊂ X and

a∗(X) ⊂ X.
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(iv) There exist a Hilbert space H, an S ∈ B(H),

and a linear complete isometry σ : X →
B(H) with σ(ux) = Sσ(x) for all x ∈ X,

and such that also S∗σ(X) ⊂ σ(X).

(v) There exists a linear complete isometry σ

from X into a C∗-algebra, and a map R : X →
X, such that σ(T (x))∗σ(y) = σ(x)∗σ(R(y)),

for x, y ∈ X.

(vi) There exists a map R : X → X, such that

〈T (x) | y 〉 = 〈x |R(y) 〉, x, y ∈ X.

The ‘inner product’ in (vi) is the Shilov inner

product

The canonical inclusion map from Al(X) into

CB(X) (or into B(X)) is an isometric homo-

morphism.
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If X is an operator space, then a linear idem-

potent P : X → X is a left M-projection if the

map

σP (x) =

[
P (x)

x− P (x)

]
is a complete isometry from X → C2(X).

We say that a subspace J of an operator space

X is a right M-ideal if J⊥⊥ = P (X∗∗) for a left

M-projection P on X∗∗.

We’ll say more about M-ideals later.
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Theorem (B-Effros-Zarikian) If P is an idem-
potent linear map on an operator space X,
then the following are equivalent:

(i) P is a left M-projection.

(ii) τP is completely contractive.

(iii) P is a (selfadjoint) projection in the C∗-
algebra A`(X).

(iv) There exist a completely isometric embed-
ding σ : X → B(H), and a projection e ∈
B(H), such that σ(Px) = eσ(x) for all x ∈
X.

(v) There exists a completely isometric em-
bedding σ : X → B(H) such that

σ(x)∗σ(y) = 0, x ∈ P (X), y ∈ (I−P )(X).
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One major use of left multipliers is to improve

on previously known ‘characterization theorems’

for operator algebras, ‘operator modules’ etc.

For example, we give a quick proof of the

B-Ruan-Sinclair theorem: namely that up to

completely isometric isomorphism, unital oper-

ator algebras are precisely the operator spaces

A which is a unital algebra whose product sat-

isfies ‖ab‖n ≤ ‖a‖n‖b‖n for all a, b ∈ Mn(A).

The one direction of the proof (⇒) is obvious,

since if A is an operator algebra then so is

Mn(A).
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Let λ : A → B(A) be the homomorphism

λ(a)(b) = ab, x, y ∈ A

Let a ∈ Ball(A), and b, c ∈ A:

∣∣∣∣∣
∣∣∣∣∣
[

ax
y

]∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
[

a 0
0 1

] [
x 0
y 0

]∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
[

a 0
0 1

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[

x
y

]∣∣∣∣∣
∣∣∣∣∣

≤ 1

∣∣∣∣∣
∣∣∣∣∣
[

x
y

]∣∣∣∣∣
∣∣∣∣∣

Thus λ(a) ∈ Ball(M`(A)). So λ : A → M`(A)

and ‖λ‖ ≤ 1. Conversely,

‖λ(a)‖ ≥ ‖λ(a)(1)‖ = ‖a‖

So λ is an isometry. Similarly completely iso-

metric. But M`(X) is always an operator al-

gebra! �
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There is a similar quick proof for the ‘charac-

terization of operator modules’ that also im-

proves that characterization:

Definition An operator module over a (unital

say) operator algebra A, is a closed subspace

X ⊂ B(H) with π(A)X ⊂ X for a c. contr.

hom. π : A → B(H).

(Note: c. contr. homs. = ∗-homs if A C*-algebra)

Theorem. (Christensen-Effros-Sinclair, B)

For an operator space X, X is an operator

A-module iff ∃ c. contr. hom. A →M`(X) iff

‖ax‖n ≤ ‖a‖n‖x‖n ∀a ∈ Mn(A), x ∈ Mn(X)
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Multipliers and algebraic structure

As we said, even though our multiplier algebras
are only defined in terms of norms and vector
space structure, they encode algebra miracu-
lously.

Eg. if you have ‘forgotten’ the product on an
operator algebra A, you can recover it from the
norm, via the M`(X) construction:

Suppose A has an identity element 1, and
X = A with forgotten product

Form M`(X), this is an operator algebra whose
elements are maps on X; the product is ‘com-
position’

But A is exactly M`(X), via the map
θ : T 7→ T (1) from M`(X) to X

So ab = θ(θ−1(a) ◦ θ−1(b))
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III. Multipliers and duality (Mostly B-Magajna)

We begin with a generalization of a result of

Tomiyama

The most interesting modules X over a C*-

algebra have a norm satisfying the following

condition:

‖a1x1+a2x2‖ ≤
√
‖a1a∗1 + a2a∗2‖

√
‖x1‖2 + ‖x2‖2.

Here a1, a2 ∈ A, x1, x2 ∈ X.

Call this a ‘representable module’.

A module version of Tomiyama’s result on con-

ditional expectations:
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Theorem Φ : X → X linear from a repre-

sentable module X over C∗-alg A onto a sub-

module, ‖Φ‖ ≤ 1,Φ ◦Φ = Φ. Then

Φ(ax) = aΦ(x) , a ∈ A, x ∈ X.



Idea of proof Not hard to prove that the

representable modules are precisely the ones

isometrically A-isomorphic to an operator A-

module (Magajna)

So we can assume X is an operator A-module

WLOG A is a W*-algebra (by going to 2nd

dual)

By density of the span of projections p in a

W*-algebra it suffices to show

p⊥Φ(px) = 0, x ∈ X

Then use trick in well known proof of Tomiyama’s

result. �
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Theorem Suppose that X is a representable

module over a C∗-algebra A, and suppose that

X is also a dual Banach space. Then the map

x 7→ ax on X is weak* continuous for all a ∈ A.

Proof Let u be the map x 7→ ax. The ad-

joint of the canonical map X∗ → X∗ is a w∗-
continuous contr. projection q : X∗∗ → X

This induces an isometric map v : X∗∗/Ker(q) →
X. By basic duality principles, v is w∗-continuous.

By Krein-Smulian, v is a w∗-homeomorphism.

We claim that:

q(u∗∗(η)) = u q(η), η ∈ X∗∗.

If so, then u∗∗ induces a map u̇ in B(X∗∗/Ker(q)).

Since u∗∗ is w∗-continuous, so is u̇, by Banach

space principles. It is easy to see that u̇ =

v−1uv. Since u̇, v, and v−1 are w∗-continuous,

so is u, and thus the result is proved.
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In fact the Claim follows from the ‘generalized

Tomiyama’ result.

Indeed, X∗∗ may be regarded as an opera-

tor A∗∗-module. Therefore it is an A-module,

with module action aη = u∗∗(η) in the notation

above, and X is an A-submodule. �

Corollary Suppose X is a subspace of a C∗-
algebra A. If a ∈ A, with aX ⊂ X and a∗X ⊂ X,

then the map x 7→ ax on X is w∗-continuous

for any Banach space predual of X.

Proof X is a left operator module over the C∗-
algebra generated by 1 and a. By the previous

result, left multiplication by a is continuous in

the w∗-topology of X. �
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As an example of the usefulness of this result,

it gives a new proof of an important and sub-

stantial theorem about ‘W ∗-modules/WTROs’:

Theorem (Zettl, Effros-Ozawa-Ruan) A TRO

with a Banach space predual = pM(1− p) for

a von Neumann algebra M and projn. p ∈ M .

Equivalently, a C*-module Z over a vNA, with

a predual, is ‘selfdual’ (that is, every bounded

module map from Z into the vNA is of form

f(·) = 〈z|·〉).

Idea of new proof: The hard part is to show

1) the module is self dual, and 2) the ‘inner

product’ is separately weak* continuous. To

do this one uses the last Corollary three times!!
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Corollary Banach module characterization of

the σ-weakly closed spaces of operators which

are invariant under the action of a von Neu-

mann algebra M :

They are exactly the ‘representable modules’

over M such that for all x ∈ X the canon-

ical map M → X given by m 7→ mx is w∗-
continuous.
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Theorem Every left multiplier of a dual oper-

ator space is w∗-continuous.

Proof If u ∈ Ml(X), then u∗∗ ∈ B(X∗∗). As

in the last theorem, let q : X∗∗ → X be the

canonical projection, which is c. contractive.

As in that result, it suffices to show that

q(u∗∗(η)) = u q(η), η ∈ X∗∗. (1)

In order to prove (1), we let Z be an injective

envelope of X, viewed as a TRO pA(1− p), as

in Part I of Lecture 2.

If E = Z∗∗ then E = pA∗∗(1−p) is also a TRO.

Clearly X∗∗ ⊂ E

By injectivity of Z, extend q to a completely

contractive map θ : E → Z. Since θ|X = IX, by

the rigidity property of the injective envelope

we must have θ|Z = IZ.
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Thus θ is a completely contractive projection

from E onto Z.

By the ‘generalized Tomiyama’ result, θ is a

left pAp-module map. Let a ∈ pAp be such

that ax = ux for all x ∈ X (using the charac-

terization of left multipliers).

Since θ is a left pDp-module map,

θ(aη) = aθ(η) = aq(η), η ∈ X∗∗. (2)

On the other hand, we claim that

a η = u∗∗(η), η ∈ X∗∗. (3)

To see this, view both sides as functions from

X∗∗ into E. Then both functions are w∗-continuous.

But (3) holds if η ∈ X, and by density it must

hold for η ∈ X∗∗.

By (3), we have that θ(aη) = θ(u∗∗(η)) =

q(u∗∗(η)). This and (2) proves (1). �
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This theorem has many applications.

This is because functional analytic questions

about spaces of operators often boil down to

considerations involving weak∗, topologies, and

the key point is to prove that certain linear

functions are weak∗ continuous.

For example, we can characterize weak* closed

operator algebras:

Theorem (Le Merdy-B-Magajna) An op-

erator algebra which is a dual operator space,

is completely isometrically homomorphic, via

a weak*-homeomorphism, to a weak* closed

subalgebra of some B(H).

Proof. By last theorem, the multiplication is

separately weak* continuous. Then ... . �
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Corollary Given a subspace X of a C∗-algebra

A (or of B(H)), and a ∈ A with aX ⊂ X. Then

the function x 7→ ax is weak* continuous on X

with respect to any op. space predual of X

Proof. Left multiplication by A is a left mul-

tiplier! �

Theorem (B-E-Z) If X is a dual operator

space then A`(X) is a von Neumann algebra.

Subtlety of preduals:

Theorem (B-Magajna) Last several results

are not true if you assume Banach space pre-

dual instead of operator space predual.

38



IV. Noncommutative M-ideals

(Joint with Effros and Zarikian)

We want to generalize the classical M-ideal no-
tion to operator spaces, in a way that the clas-
sical M-ideals are the left M-ideals in MIN(X),
and such that the left M-ideals in C∗-algebras
are the left ideals

Recall: Classical M-ideals

M-projection: idempotent P : X → X s.t.

X → X ⊕∞ X : x 7→ (P (x), (I − P )(x))

is an isometry (This is saying ...)

J ⊂ X is an M-ideal if J⊥⊥ is the range of an
M-projection on X∗∗

Ex. The M-ideals in a C∗-algebra are the two-
sided ideals

Extensive and useful theory - see Harmand,
Werner, Werner
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Say J ⊂ X is a left M-ideal if J⊥⊥ is the range

of a left M-projection on X∗∗

Note: our definitions are only in terms of op-

erator space structure, yet often encodes im-

portant algebraic information.

Examples:

• Classical M-ideals

• left ideals in C∗-algebras, submodules of

Hilbert C∗-modules

• left M-ideals in an operator algebras ex-

actly the left ideals with a right contr. ap-

prox. identity
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The game then is to generalize theorems from

classical M-ideal theory, and apply these theo-

rems in ‘noncommutative functional analysis.

Main tool is that A`(X
∗∗) is a von Neumann

algebra, and so we know exactly how the pro-

jections in there behave!

For example: if J1 and J2 are right M-ideals

then J1 + J2 is a right M-ideal.

In B-Zarikian Memoirs of AMS (2006), we gen-

eralize the basic facts about M-ideals to oper-

ator spaces

It is really a generalization, to operator spaces,

of the theory of submodules of C∗-modules.
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