
Operator modules
and their tensor products

David Blecher
University of Houston

February 6, 2016. Oberwolfach



Plan:

Part 0. Why operator spaces?

Part I. Operator space tensor products

Part II. Operator algebras and their modules

Part III. Tensor products of operator modules

Part IV. Back to C∗-modules

Part V. Nonselfadjoint algebras and their modules again



Part 0. Why operator spaces?

Aperitif/Appetithäppchen: Let A be your favourite unital subalgebra of
a C∗-algebra, let Cn(A) be the first column of Mn(A), and consider the
basic result from ring theory

Mn(A) ∼= HomA(Cn(A))

This relation breaks down when norms are placed on the spaces. That is,
there is no sensible norm to put on Cn(A) so that

Mn(A) ∼= BA(Cn(A)) isometrically

(and even bicontinuous isomorphism breaks down when n =∞).



Part 0. Why operator spaces?

Aperitif/Appetithäppchen: Let A be your favourite unital subalgebra of
a C∗-algebra, let Cn(A) be the first column of Mn(A), and consider the
basic result from ring theory

Mn(A) ∼= HomA(Cn(A))

This relation breaks down when norms are placed on the spaces. That is,
there is no sensible norm to put on Cn(A) so that

Mn(A) ∼= BA(Cn(A)) isometrically

(and even bicontinuous isomorphism breaks down when n =∞).
However, operator spaces save the day:

Mn(A) ∼= CBA(Cn(A)) completely isometrically

• For C∗-algebras themselves this is OK, and the usefulness of operator
spaces is less obvious, but will see later (must use ‘completely bounded
morphisms’ in many later results, etc).



Part I. Operator space tensor products

• Tensor products come in from the beginning in operator space theory:
Mn(X) is the spatial or minimal tensor product of Mn and X .

Minimal or spatial tensor product: X⊗minY may be defined by the relation

X ⊗min Y ↪→ CB(Y ∗, X) completely isometrically

• We will not say much about this tensor product here



• If X , Y , and W are operator spaces, and u:X × Y → W is bilinear
define a bilinear map un : Mn(X)×Mn(Y )→Mn(W ) by

(x, y) 7−→
[ n∑
k=1

u(xik, ykj)
]
i,j
,

where x = [xij] ∈Mn(X) and y = [yij] ∈Mn(Y ). If supn ‖un‖ <∞ we
say that u is completely bounded (in the sense of Christensen and Sinclair),
and write this supremum as ‖u‖cb.

• u is completely contractive if ‖u‖cb ≤ 1.



• If X , Y , and W are operator spaces, and u:X × Y → W is bilinear
define a bilinear map un : Mn(X)×Mn(Y )→Mn(W ) by

(x, y) 7−→
[ n∑
k=1

u(xik, ykj)
]
i,j
,

where x = [xij] ∈Mn(X) and y = [yij] ∈Mn(Y ). If supn ‖un‖ <∞ we
say that u is completely bounded (in the sense of Christensen and Sinclair),
and write this supremum as ‖u‖cb.

• u is completely contractive if ‖u‖cb ≤ 1.

• Completely bounded multilinear maps of more than 2 variables have a
similar definition



• If v:X → B(L,H) and w:Y → B(H,K) are completely bounded
linear maps, then it is easy to see that the bilinear map (x, y) 7→ v(x)w(y)
is completely bounded in the sense above, and has completely bounded norm
dominated by ‖v‖cb‖w‖cb.

• Remarkably the converse is true too: Christensen and Sinclair (the
C∗-algebra case), and Paulsen and Smith (the general case)

Theorem u : X × Y → B(H,K) is completely contractive (as a bilinear
map) if and only if there is a Hilbert space L, and there are completely
contractive linear maps v:X → B(L,H) and w:Y → B(K,L), with
u(x, y) = v(x)w(y) for all x ∈ X and y ∈ Y .

Remark. One has further ‘Stinespring’ representations for v and w



• For n ∈ N and z ∈Mn(X ⊗ Y ) we define the Haagerup tensor norm

‖z‖h = ı́nf{‖x‖‖y‖},
where the infimum is taken over all p ∈ N, and all ways to write z = x� y,
where x ∈ Mn,p(X), y ∈ Mp,n(Y ). Here x� y denotes the formal matrix
product of x and y using the ⊗ sign as multiplication: namely x � y =
[
∑p
k=1 xik ⊗ ykj].

Proposition The completion X ⊗h Y of X ⊗ Y with respect to ‖ · ‖h is
an operator space (called the Haagerup tensor product)

• The Haagerup tensor product linearizes completely bounded (in the sense
of Christensen and Sinclair) bilinear maps



• The Haagerup tensor product is functorial for completely bounded maps

• It is injective (last bullet but everything completely isometric)

• It is projective (last bullet but everything ‘complete quotient’)

• It is associative: (X1 ⊗hX2)⊗hX3 = X1 ⊗h (X2 ⊗hX3).

• Convenient norm formulae: If z ∈ X ⊗h Y then ‖z‖h < 1 iff z is a
norm convergent sum

∑∞
k=1 ak ⊗ bk in X ⊗h Y , with ‖

∑∞
k=1 aka

∗
k‖ < 1

and ‖
∑∞
k=1 b

∗
kbk‖ < 1, and where the last two sums converge in norm.

• That is, ‖z‖n = ı́nf{‖x‖ ‖y‖ : z = x� y} , where x� y is defined to
be [
∑
k xik ⊗A ykj]



• It is self-dual: X∗ ⊗h Y ∗ ⊂ (X ⊗h Y )∗ completely isometrically.

But we will not use the Banach duality theory of tensor norms in this talk.



• There is also a notion of jointly completely bounded bilinear maps that I

will not discuss here. The operator space projective tensor product X
_
⊗ Y

is defined so as linearize jointly completely bounded bilinear maps:

JCB(X, Y ;W ) ∼= CB(X,CB(Y,W )) ∼= CB(X
_
⊗ Y,W )

• (Comparison of tensor norms) The ‘identity’ is a complete contraction

X
_
⊗ Y → X ⊗h Y → X ⊗min Y



• There is a calculus of tensor products. If H,K are Hilbert spaces, and
if m,n ∈ N, then we have the following complete isometries:

(1) Hr ⊗hX = Hr
_
⊗ X , and X ⊗hHc = X

_
⊗ Hc.

(2) Hc ⊗hX = Hc ⊗min X , and X ⊗hHr = X ⊗min H
r.

(3) Cn(X) ∼= Cn ⊗hX = Cn ⊗min X , where Cn = Mn,1(C),
and Rn(X) ∼= X ⊗h Rn = X ⊗min Rn.

(4) (H̄r
_
⊗ X

_
⊗ Kc)∗ = (H̄r ⊗hX ⊗hKc)∗ ∼= CB(X,B(K,H)).

(5) K(K,H) ∼= Hc ⊗min K̄
r and K(K,H)⊗min X

∼= Hc ⊗hX ⊗h K̄r.

(6) Mm,n(X) ∼= Cm ⊗hX ⊗h Rn.

(7) Mm,n(X ⊗h Y ) ∼= Cm(X)⊗h Rn(Y ).

(8) Hc
_
⊗ Kc = Hc⊗hKc = Hc⊗minK

c = (H ⊗2K)c, and similarly for
row Hilbert spaces.

(9) S1(K,H) ∼= K̄r
_
⊗ Hc.

(10) CB(S1(`2I , `
2
J), X) ∼= MI,J(X), if I, J are sets.



The extended and sigma Haagerup tensor product X ⊗eh Y and X ⊗σ Y
are respectively an ‘enlarged’ Haagerup tensor product and a dual space
variant.

• E.g. Hc ⊗eh K̄
r ∼= B(H,K)



Part II. Operator algebras and their modules

• The characterization of operator algebras (subalgebras of B(H)):

Completely isometric variant (B-Ruan-Sinclair): Up to completely isome-
tric isomorphism the operator algebras are precisely the operator spaces with
a multiplication which is a complete contraction A ⊗h A → A. Assuming
an identity or approximate identity of norm 1.

Completely bounded variant (B): Up to completely bounded isomorphism
the operator algebras are precisely the operator spaces with an associative
multiplication which is a completely bounded map A⊗h A→ A.



A concrete left operator A-module is a linear subspace X ⊂ B(K,H),
which we take to be norm closed as always, together with a completely
contractive homomorphism θ:A→ B(H) for which θ(A)X ⊂ X . Such an
X is a left A-module via θ.

There is also an abstract definition of operator modules.



Theorem [B, C-Effros-S] Operator modules are just the operator spaces
which are modules over an operator algebra, such that the module action is
completely contractive as a map on the Haagerup tensor product

• My favorite proof of the last theorem and the B-Ruan-Sinclair theorem
uses the following:

Theorem [B-Effros-Zarikian] Linear T : X → X satisfies that T ⊕ I :
C2(X)→ C2(X) is completely contractive iff there is a contractive Hilbert
space operator S such that T (x) = S · x for all x ∈ X



Suppose that A,B are operator algebras

(1) If H,K are Hilbert spaces, and if θ:A→ B(H) and π:B → B(K)
are completely contractive homomorphisms, then B(K,H) is an operator
A-B-bimodule (with the canonical module actions).

(2) Submodules of operator modules are clearly operator modules.

(3) Any operator space X is an operator C-C-bimodule.

(4) Any operator algebra A is an operator A-A-bimodule of course.

(5) Hilbert A-module: a Hilbert space H which is a left A-module who-
se associated homomorphism θ:A → B(H) is completely contractive (or
sometimes, completely bounded). Then Hc is an operator A-module.



• We define AHMOD to be the category of Hilbert A-modules, with
bounded A-module maps as the morphisms (they are automatically comple-
tely bounded on the associated column Hilbert spaces).

• There is a theory of Hilbert modules which I will omit here, e.g. always
exist Hilbert modules such that A′′ = Āw∗ (B-Solel).



• Can take quotients of operator modules, ‘opposites’, ‘prolongations’,
etc. (latter: X is an operator A-module and θ:B → A is a completely
contractive (or completely bounded) homomorphism, and bx = θ(b)x).

• The A-modules that correspond to completely contractive (or completely
bounded) homomorphisms A → CB(X) we call matrix normed modules.
Equivalently, these are exactly the left A-modules X which are also an
operator space, such that the module action on X extends to a complete

contraction (completely bounded) A
_
⊗ X −→ X .

•We will not discuss the latter class much here (used a lot in NC abstract
harmonic analysis)



The algebra of a bimodule: If X is an (operator) A-B-bimodule over
algebras A and B, set D to be the algebra[

a x
0 b

]
for a ∈ A, b ∈ B, x ∈ X . The product here is the formal product of 2× 2
matrices, implemented using the module actions and algebra multiplications.
This is an (operator) algebra.



• Any C∗−module Z is an operator module (just look at the linking
C∗-algebra L(Z))

‖[yij]‖n = ‖[
n∑
k=1

〈 yki | ykj 〉]‖
1
2

• A right C∗-module Z which is also a left module over a different C∗-
algebra A via a nondegenerate *-homomorphism θ : A → B(Z), is also a
left operator module. [Indeed by looking at M(L(Z)) one can see Z is a
left operator module over B(Z), the 1-1-corner of M(L(Z)).]

• Indeed most of the important modules in C∗−theory are operator mo-
dules



• Any bounded module map between C∗-modules is completely bounded,
with ‖T‖cb = ‖T‖. Thus we find ourselves in a situation where we do
not have to insist on working only with completely bounded maps, rather
we can exploit the fact that our maps already are completely bounded.
[One proof: WLOG Y = Z, then look in LM(L(Z)) where T becomes
‘left multiplication by an operator’. Recall also that BA(Z) ∼= LM(K(Z))
(Lin).]

• There are several methods to ‘recover the inner product’ from the Banach
module structure.



Theorem Suppose Y is a Banach space (resp. operator space) and a right
module over a C∗-algebra A. Then Y is a C∗-module, and the norm on
Y (resp. the matrix norms on Y ) coincides with the C∗-module’s norm
(resp. canonical operator space structure) if and only if there exists a net
of positive integers n(α), and contractive (resp. completely contractive)
A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A) → Y with

ψα ◦ φα → IdY strongly (that is, point-norm) on Y . In this case, for
y, z ∈ Y , the norm limit ĺımα φα(y)∗φα(z) exists in A and equals the
C∗-module inner-product.



Theorem Suppose Y is a Banach space (resp. operator space) and a right
module over a C∗-algebra A. Then Y is a C∗-module, and the norm on
Y (resp. the matrix norms on Y ) coincides with the C∗-module’s norm
(resp. canonical operator space structure) if and only if there exists a net
of positive integers n(α), and contractive (resp. completely contractive)
A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A) → Y with

ψα ◦ φα → IdY strongly (that is, point-norm) on Y . In this case, for
y, z ∈ Y , the norm limit ĺımα φα(y)∗φα(z) exists in A and equals the
C∗-module inner-product.

• This suggests the following generalization of C∗-modules: for an operator
algebra A and a right A-module Y which is also an operator space, such that
there exists a net of positive integers n(α), and contractive (resp. completely
contractive) A-module maps φα : Y → Cn(α)(A) and ψα : Cn(α)(A)→ Y
with ψα ◦φα → IdY strongly on Y . This works! These are called A-rigged
modules, and their theory generalizes the theory of C∗-modules (later).



Part III. Tensor products of operator modules

• If X is a right A-module, Y is a left A-module, Z is a vector space, then
a bilinear map u:X ×Y → Z is said to be balanced if u(xa, y) = u(x, ay)
for all x ∈ X, y ∈ Y, a ∈ A.

• Given such X and Y , we define the algebraic module tensor product
X ⊗A Y to be the quotient of X ⊗ Y by the subspace spanned by terms
of the form xa ⊗ y − x ⊗ ay, for x ∈ X, y ∈ Y, a ∈ A. It is clear that
X ⊗A Y has the following universal property: given any vector space Z,
and any balanced bilinear u:X × Y → Z, then there exists a unique linear
ũ:X ⊗A Y → Z mapping x⊗ y to u(x, y) for all x ∈ X, y ∈ Y .

• Thus the module tensor product ‘linearizes balanced bilinear maps’.



• If X and Y are operator spaces which are, respectively, right and left

A-modules, define X⊗hAY (resp. X
_
⊗A Y ) to be the quotient of X⊗hY

(resp. X
_
⊗ Y ) by the closure of the subspace spanned by terms of the form

xa⊗ y − x⊗ ay.

• These are the module Haagerup tensor product, and the module operator
space projective tensor product.

• Thus X ⊗hA Y ‘linearizes’ balanced completely bounded maps. In fact
this property characterizes X ⊗hA Y .

• Similarly X
_
⊗A Y ‘linearizes’ jointly balanced completely bounded

maps.



• ⊗hA (resp.
_
⊗A) is functorial for completely bounded module maps

• It is projective (last bullet but everything ‘complete quotient’)

• It is associative: (X1 ⊗hAX2)⊗hB X3 = X1 ⊗hA (X2 ⊗hB X3).

• Convenient norm formulae: If z ∈ X ⊗hA Y then ‖z‖ < 1 iff z is
a norm convergent sum

∑∞
k=1 ak ⊗ bk , with ‖

∑∞
k=1 aka

∗
k‖ < 1 and

‖
∑∞
k=1 b

∗
kbk‖ < 1, and where the last two sums converge in norm.

• That is, ‖z‖n = ı́nf{‖x‖ ‖y‖ : z = x�A y} , where x�A y is defined
to be [

∑
k xik ⊗A ykj]

• ‘Change of rings’: X ⊗hA B if X is a right operator A-module, and
θ : A→ B a completely bdd homomorphism. As expected X⊗hAA ∼= X .



• In the main cases we are interested in later we also have commutation
with direct sums:

⊕ci (Yi ⊗hA Z) ∼= (⊕ci Yi) ⊗hA Z.



• In the main cases we are interested in later we also have commutation
with direct sums:

⊕ci (Yi ⊗hA Z) ∼= (⊕ci Yi) ⊗hA Z.

• Thus we are seeing that there is a nice ‘algebraic calculus’, fitting in
with the idea in the Appetithäppchen.



• Similar results for m-fold module tensor products.

• Indeed in the ‘non-module’ case in Part I there is something of an
‘algebraic calculus’ of module tensor products



Wittstock bimodule extension theorem One may extend completely con-
tractive bimodule maps from a sub-bimodule into B(H), to the containing
operator bimodule.

Bilinear module extension theorem Suppose that A is a C∗-algebra, and
that X (resp. Y ) is an A-submodule of a right (resp. left) operator A-
module W (resp. Z). If L is a Hilbert space and if u:X × Y → B(L) is
a completely contractive A-balanced bilinear map, then u has a completely
contractive A-balanced bilinear extension û:W × Z → B(L).

Corollary (Injectivity of module Haagerup tensor product) If A is a
C∗-algebra, then the canonical map X ⊗hA Y → W ⊗hA Z is a com-
plete isometry.



Part IV. Back to C∗-modules

Theorem If Y is a C∗-module and Z an operator module then K(Y, Z) ∼=
Z ⊗hA Ȳ completely isometrically.

Ingredients of proof: The Haagerup norm formula easily gives the can. map
Z ⊗hA Ȳ → K(Y, Z) contractive. A contractive asymptotic inverse to this
comes from the asymptotic factorization maps in the theorem factoring Y
through A-modules of the form Cn(A)

Corollary T ∈ K(Y, Z) with ‖T‖ < 1 if and only if we can write T =∑∞
k=1 |zk〉〈yk|, where ‖

∑∞
k=1 |zk〉〈zk|‖ < 1, and ‖

∑∞
k=1 |yk〉〈yk|‖ < 1.

All the sums here converge in the norm. Equivalently, T factors through
C∞(A) by compact A-module maps of norm < 1.



Theorem The exterior tensor product of C∗−modules Y and Z is comple-
tely isometrically isomorphic to their spatial operator space tensor product
Y ⊗min Z.

Theorem The interior tensor product Y ⊗θZ of C∗-modules is completely
isometrically isomorphic to module Haagerup tensor product Y ⊗hAZ. Here
θ : A→ B(Z) is an nondegenerate *-homomorphism.

• Proofs use the functoriality of ⊗hA, and the fact that Cn(A)⊗hAZ ∼=
Cn ⊗h A ⊗hA Z ∼= Cn(Z) completely isometrically. Since Y satisfies the
Theorem above (i.e. Y factors asymptotically through A-modules of the
form Cn(A)), Y ⊗hA Z factors asymptotically through B-modules of the
form Cn(Z).

• This perspective gave new insights into the tensor products of C∗-
modules. E.g. it gives norm formulae for elements of Y ⊗θ Z.

• K(Y ⊗θ Z) ∼= Y ⊗hA K(Z)⊗hA Ȳ



Hom-Tensor relations: Let A and B be C∗-algebras. We have

(1) KA(Y,KB(Z,N)) ∼= KB((Y ⊗θ Z), N) completely isometrically, if Y, Z
are right C∗-modules over A and B respectively, and Z,N are left and
right operator modules over A and B respectively.

(2) KA(X,KB(W,M)) ∼= KB((W ⊗θ X),M) completely isometrically, if
X,W are left C∗-modules over A and B respectively, and W,M are right
and left operator modules over A and B respectively.

(3) KA(Y, (N ⊗hBM)) ∼= N ⊗hB KA(Y,M) completely isometrically, if Y
is a right module over A, if M is a B −A operator bimodule and if N is
a right A-operator module.

(4) KA(X,N ⊗hB M) ∼= KA(X,N)⊗hB M completely isometrically, if X
is a left C∗-module over A, if N is an A − B operator bimodule and if
M is a left B-operator module.

(5) KB(KA(Y,W ),M) ∼= Y ⊗hA KB(W,M) completely isometrically, if Y
is a right C∗-module over A, M is a left B-operator module, and W is a
right A operator module which is a left B C∗-module.



(6) KB(KA(X,Z), N) ∼= KB(Z,N) ⊗hA X completely isometrically, if X
is a left C∗-module over A, N is a right B operator module, and Z is a
left A operator module which is a right B C∗-module.

(7) KA(X,KB(Z,W )) ∼= KB(Z,KA(X,W )) completely isometrically, if
X,Z are left and right C∗-modules over A and B respectively, and if
W is an A−B operator bimodule.

Idea of proof: Use earlier identity K(Y, Z) ∼= Z⊗hA Ȳ to write everything
as a Haagerup tensor product, then use associativity of tensor product



Eilenberg-Watts type theorem: If C∗MODA is the category of right C∗-
modules over a C∗-algebra A, with morphisms the bounded A-module maps,
then the strongly continuous ∗-functors C∗MODA→ C∗MODB are preci-
sely (up to natural unitary isomorphism) the interior tensor product −⊗θZ
(or equivalently, KA((−)̄, Z)) for a right C∗-module Z over B, and a non-
degenerate ∗-homomorphism θ : A→ B(Z).

Remark. The ‘finitely generated’ C∗-modules are enough in this theorem



Eilenberg-Watts type theorem: If C∗MODA is the category of right C∗-
modules over a C∗-algebra A, with morphisms the bounded A-module maps,
then the strongly continuous ∗-functors C∗MODA→ C∗MODB are preci-
sely (up to natural unitary isomorphism) the interior tensor product −⊗θZ
(or equivalently, KA((−)̄, Z)) for a right C∗-module Z over B, and a non-
degenerate ∗-homomorphism θ : A→ B(Z).

Remark. The ‘finitely generated’ C∗-modules are enough in this theorem

Strong Morita equivalence: Simplest definition–which also works for non-
selfadjoint algebras–the existence of operator bimodules X, Y with X ⊗hA
Y ∼= B and Y ⊗hB X ∼= A as operator bimodules.

Theorem A and B are strongly Morita equivalent iff OMODA is equi-
valent to OMODB as categories. In this case the functor implementing the
equivalence ‘is’ − ⊗hA Y , with ‘inverse functor’ − ⊗hB X for X, Y as
above.



• Of course Y ⊗hAHc is a column Hilbert space, if H is a Hilbert (space)
A-module.

• Seems to me that the ‘stable isomorphism theorem’ for strongly Morita
equivalent C∗-algebras, and the matching ‘Kasparov stabilization’ results,
become a bit simpler in operator module notation

The main point: the operator space/module Haagerup tensor product ap-
proach is supposed to allow one to treat theories involving C∗-modules much
more like pure algebra.

• There is a similar ‘extended module Haagerup’, and weak* version of
the theory



Part V. Nonselfadjoint algebras and their modules again

• Recall: a rigged module: right A-module Y which is also an operator
space, such that there exists a net of positive integers n(α), and contractive
(resp. completely contractive) A-module maps φα : Y → Cn(α)(A) and

ψα : Cn(α)(A)→ Y with ψα ◦ φα → IdY strongly on Y .

• There are many alternative characterizations, e.g. in terms of an inner
product on a containing C∗-module (which if you want can be chosen to
be expressible in terms of the C∗-envelope (‘minimal’ C∗-algebra/nc Shilov
boundary), or in terms of an approximate identity for Y ⊗hAX , etc.

• Here X is ‘adjoint’ module Ỹ of rigged module Y which may be viewed
as a submodule of CBA(Y,A).



• To get our ‘primary definition’ going though one needs the recent theory
of hereditary subalgebras of operator algebras due to B-Hay-Neal (using
some deep ideas from ‘peak interpolation theory’).

• The theory in the last section generalizes to this nonselfadjoint setting,
with few exceptions. This is mostly because we are using the same key tool,
the module Haagerup tensor product, and its ‘calculus’, i.e. strong algebraic
properties.



• Sample exception: module Haagerup tensor product need not be injective
now. And now the ‘stable isomorphism theorem’ is different (best results on
this in recent papers of Eleftherakis...).

• And again, there is a weak* version of all of this ... .



Key point: the Haagerup tensor product facilitates ‘continuity’ for algebraic
(ring-theoretic) structures (Bram). There is a ‘calculus’ of algebraic formulae
(involving tensor products) that is very useful.


