Math 1313 Section 3.3
Section 3.3: Matrix Operations

Addition and Subtraction of Matrices

If A and B are two matrices of the same size,

1. $A+B$ is the matrix obtained by adding the corresponding entries in the two matrices.
2. $A-B$ is the matrix obtained by subtracting the corresponding entries in B from A.

Laws for Matrix Addition

If A, B, and C are matrices of the same dimension, then

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$

Example 1: Refer to the following matrices: If possible,

$$
\mathrm{A}=\left[\begin{array}{ccc}
8 & -3 & 1 \\
0 & -9 & -4 \\
9 & 6 & 7
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ccc}
-5 & 4 & -1 \\
8 & 4 & 8 \\
10 & 15 & -2
\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{ccc}
10 & -8 & 3 \\
5 & -4 & 2
\end{array}\right], \quad \mathrm{D}=\left[\begin{array}{lll}
4 & 1 & 3 \\
8 & 5 & 1
\end{array}\right]
$$

a. compute A - B
b. compute $\mathrm{B}+\mathrm{C}$.
c. compute $\mathrm{D}+\mathrm{C}$.

Math 1313 Section 3.3
Scalar Multiplication
A scalar is a real number.
Scalar multiplication is the product of a scalar and a matrix. To perform scalar multiplication, each element in the matrix is multiplied by the scalar; hence, it "scales" the elements in the matrix

Example 2: Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{ll}-1 & 4 \\ -7 & 9\end{array}\right)$, and $C=\left(\begin{array}{ccc}1 & 2 & 3 \\ -6 & -9 & 1\end{array}\right)$ find, if possible, a. -3 C
b. $-2 \mathrm{~B}-\mathrm{A}$
c. $3 B+2 C$

Transpose of a Matrix

If A is an mxn matrix with elements $a_{i j}$, then the transpose of A is the nxm matrix A^{T} with elements $a_{j i}$.

$$
A=\left[\begin{array}{ccc}
2 & 5 & 50 \\
1 & 3 & 27 \\
16 & 45 & 1
\end{array}\right] \quad A^{T}=\left[\begin{array}{ccc}
2 & 1 & 16 \\
5 & 3 & 45 \\
50 & 27 & 1
\end{array}\right]
$$

Example 3: Given the following matrices, find their transpose.
a. $B=\left(\begin{array}{ccc}-3 & 0 & 6 \\ 10 & 100 & 3\end{array}\right)$

Math 1313 Section 3.3
b. $\mathrm{D}=\left(\begin{array}{c}0 \\ -4 \\ 11 \\ -3\end{array}\right)$

A square matrix is a matrix having the same number of rows as columns.

$$
\text { Ex: }\left(\begin{array}{ll}
3 & 9 \\
4 & 1
\end{array}\right)
$$

Equality of Matrices

Two matrices are equal if they have the same dimension and their corresponding entries are equal.

Example 4: Solve the following matrix equation for $\mathrm{w}, \mathrm{x}, \mathrm{y}$, and z .

$$
\left[\begin{array}{ll}
\mathrm{w}+6 & \mathrm{x} \\
\mathrm{y}-2 & \mathrm{z}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
1 & 4
\end{array}\right]
$$

Example 5: Solve for the variables in the matrix equation.

$$
-\left[\begin{array}{cc}
1 & -2 \\
4 & 3
\end{array}\right]+9\left[\begin{array}{cc}
u-6 & 2 z+5 \\
y & -\frac{1}{3}
\end{array}\right]=-2\left[\begin{array}{cc}
3 & -8 \\
1 & v
\end{array}\right]
$$

