Section 7.1
 Random Variables and Probability Distributions

A rule that assigns a number to each outcome of an experiment is called a random variable. Capital letters are often used to represent random variables.

For example, a random variable X can represent the sum of the face values of two sixsided dice. The random variable may take on any number in the set $\{2,3, \ldots, 12\}$.

We can construct the probability distribution associated with a random variable.
If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are values assumed by the random variable X with associated probabilities $P\left(X=x_{1}\right)=p_{1}, P\left(X=x_{2}\right)=p_{2}, \ldots, P\left(X=x_{n}\right)=p_{n}$, respectively, then the probability distribution of X may be expressed in the following way.

x	$P(X=x)$
x_{1}	p_{1}
x_{2}	p_{2}
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
x_{n}	p_{n}

We can also graphically represent the probability distribution of a random variable.
A bar graph which represents the probability distribution of a random variable is called a histogram.

Example 1: Given the following histogram, calculate the probability that $x=3$.

Example 2: The rates paid by 25 financial institutions on a certain day for money-market deposit accounts are shown in the accompanying table:

Rate, \%	2.95	3.00	3.15	3.25
Number of Institutions	3	7	7	8

a. Let the random variable X denote the interest paid by a randomly chosen financial institution on its money-market deposit accounts and find the probability distribution associated with these data.

b. Draw the histogram associated with these data.

c. Find:
$\mathrm{P}(\mathrm{X} \geq 3.00)$
$\mathrm{P}(3.00<\mathrm{X} \leq 3.25)$

