Section 7.1 Random Variables and Probability Distributions

A rule that assigns a number to each outcome of an experiment is called a **random variable.** Capital letters are often used to represent random variables.

For example, a random variable X can represent the sum of the face values of two sixsided dice. The random variable may take on any number in the set $\{2, 3, ..., 12\}$.

We can construct the probability distribution associated with a random variable.

If $x_1, x_2, x_3, ..., x_n$ are values assumed by the random variable *X* with associated probabilities $P(X = x_1) = p_1$, $P(X = x_2) = p_2$, ..., $P(X = x_n) = p_n$, respectively, then the probability distribution of *X* may be expressed in the following way.

x	P(X=x)
<i>x</i> ₁	p_{1}
<i>x</i> ₂	p_2
•	•
•	•
•	•
X _n	p_n

We can also graphically represent the probability distribution of a random variable.

A bar graph which represents the probability distribution of a random variable is called a **histogram**.

Example 1: Given the following histogram, calculate the probability that x = 3.

Example 2: The rates paid by 25 financial institutions on a certain day for money-market deposit accounts are shown in the accompanying table:

Rate, %	2.95	3.00	3.15	3.25
Number of Institutions	3	7	7	8

a. Let the random variable X denote the interest paid by a randomly chosen financial institution on its money-market deposit accounts and find the probability distribution associated with these data.

b. Draw the histogram associated with these data.

c. Find: $P(X \ge 3.00)$

 $P(3.00 < X \leq 3.25)$