## Section 7.4

## The Binomial Distribution

A binomial experiment has the following properties:

1. The number of trials is fixed.
2. There are two outcomes of the experiment: Success, with probability $p$ and Failure, with probability $q$. Note: $p+q=1$.
3. The probability of success in each trial is the same.
4. The trials are independent of each other.

Experiments with two outcomes are called Bernoulli trials or Binomial trials.

## Finding the Probability of an Event of a Binomial Experiment

In a binomial experiment in which the probability of success in any trial is $p$, the probability of exactly $x$ successes in $n$ independent trials is given by

$$
P(X=x)=C(n, x) p^{x} q^{n-x}
$$

$X$ is called a binomial random variable and its probability distribution is called a binomial probability distribution.

Example 1: An experiment consists of 10 independent trials where the probability of success is $\frac{5}{8}$. Find each of the following probabilities.
a. The probability of obtaining exactly 5 successes.
b. The probability of obtaining at least 1 success.
c. $P(X \leq 1)$

## Mean, Variance and Standard Deviation of a Random Variable

If $X$ is a binomial random variable associated with a binomial experiment consisting of $n$ trials with probability of success $p$, and probability of failure $q$, then the mean $\mathrm{E}(\mathrm{X})$, variance and standard deviation of $X$ are given by applying the following formulas:
$\mu=n p$
$\operatorname{Var}(X)=n p q$
$\sigma=\sqrt{\operatorname{Var}(X)}$

Example 2: Consider the following binomial experiment. If the probability that a marriage will end in divorce within 20 years after its start is 0.84 , what is the probability that out of 6 couples just married, in the next 20 years:
a. none will be divorced?
b. all will be divorced?
c. Find the mean and standard deviation of the experiment.

Example 3: Consider the following binomial experiment. It is estimated that $34 \%$ of the general population has blood type $\mathrm{A}^{+}$. If a sample of 9 people is selected at random, what is the probability that at least 8 of them have blood type $\mathrm{A}^{+}$?

Example 4: The probability of a person contracting influenza on exposure is 62\%. In the binomial experiment for a group of 12 people that has been exposed, what is the probability that at most 10 contract influenza?

