Section 7.5 - The Normal Distribution
 Section 7.6 - Application of the Normal Distribution

A random variable that may take on infinitely many values is called a continuous random variable.

A continuous probability distribution is defined by a function f called the probability density function.

The probability that the random variable X associated with a given probability density function assumes a value in an interval $a<x<b$ is given by the area of the region between the graph of f and the x-axis from $x=a$ to $x=b$.

The following graph is a picture of a normal curve and the shaded region is $\mathbf{P}(\mathbf{a}<\mathbf{X}<\mathbf{b})$.

Note: $\mathrm{P}(a<X<b)=\mathrm{P}(a \leq X<b)=\mathrm{P}(a<X \leq b)=\mathrm{P}(a \leq X \leq b)$, since the area under one point is 0 . The area of the region under the standard normal curve to the left of some value z, i.e. $\mathrm{P}(\mathrm{Z}<z)$ or $\mathrm{P}(Z \leq z)$, is calculated for us in the Standard Normal Cumulative Probability Table found in Chapter 7 of the online book.

Normal distributions have the following characteristics:

1. The graph is a bell-shaped curve.

The curve always lies above the x-axis but approaches the x-axis as x extends indefinitely in either direction.
2. The curve has peak at $x=\mu$. The mean, μ, determines where the center of the curve is located.
3. The curve is symmetric with respect to the vertical line $x=\mu$.
4. The area under the curve is 1 .
5. σ determines the sharpness or the flatness of the curve.
6. For any normal curve, 68.27% of the area under the curve lies within 1 standard deviation of the mean (i.e. between $\mu-\sigma$ and $\mu+\sigma$), 95.45% of the area lies within 2 standard deviations of the mean, and 99.73% of the area lies within 3 standard deviations of the mean.

The Standard Normal Variable will commonly be denoted Z. The Standard Normal Curve has $\mu=0$ and $\sigma=1$.

Example 1: Let Z be the standard normal variable. Find the values of:
a. $\mathrm{P}(\mathrm{Z}<-1.91)$
b. $\mathrm{P}(\mathrm{Z}>0.5)$
c. $\mathrm{P}(-1.65<\mathrm{Z}<2.02)$

Example 2: Let Z be the standard normal variable. Find the value of z if z satisfies: a. $\mathrm{P}(\mathrm{Z}<-z)=0.9495$
b. $\mathrm{P}(\mathrm{Z}>\mathrm{z})=0.9115$
c. $\mathrm{P}(-\mathrm{z}<\mathrm{Z}<\mathrm{z})=0.8444$

Formula: $P(Z<z)=\frac{1}{2}[1+P(-z<Z<z)]$

When given a normal distribution in which $\mu \neq 0$ and $\sigma \neq 1$, we can transform the normal curve to the standard normal curve by doing whichever of the following applies.
$\mathrm{P}(X<b)=P\left(Z<\frac{b-\mu}{\sigma}\right)$
$\mathrm{P}(X>a)=P\left(Z>\frac{a-\mu}{\sigma}\right)$
$\mathrm{P}(a<X<b)=P\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)$

Example 3: Suppose X is a normal variable with $\mu=7$ and $\sigma=4$. Find $\mathrm{P}(X>-1.35)$.

Applications of the Normal Distribution

Example 4: The heights of a certain species of plant are normally distributed with a mean of 20 cm and standard deviation of 4 cm . What is the probability that a plant chosen at random will be between 10 and 33 cm tall?

Example 5: Reaction time is normally distributed with a mean of 0.7 second and a standard deviation of 0.1 second. Find the probability that an individual selected at random has a reaction time of less than 0.6 second.

Approximating the Binomial Distribution Using the Normal Distribution

Theorem

Suppose we are given a binomial distribution associated with a binomial experiment involving n trials, each with probability of success p and probability of failure q. Then if n is large and p is not close to 0 or 1 , the binomial distribution may be approximated by a normal distribution with $\mu=n p$ and $\sigma=\sqrt{n p q}$.

Example 6: Consider the following binomial experiment. Use the normal distribution to approximate the binomial distribution. A company claims that 42% of the households in a certain community use their Squeaky Clean All Purpose cleaner. What is the probability that between 15 and 28, inclusive, households out of 50 households use the cleaner?

Example 7: Use the normal distribution to approximate the binomial distribution. A basketball player has a 75% chance of making a free throw. She will make 120 attempts. What is the probability of her making:
a. 100 or more free throws?
b. fewer than 75 free throws?

Example 8: Use the normal distribution to approximate the binomial distribution. A die is rolled 84 times. What is the probability that the number 2 occurs more than 11 times?

