Test- 4 Review

1. A group of students were surveyed. One-hundred fifty-four are enrolled in Chemistry, 49 are enrolled in Business Calculus, 38 are enrolled in both, and 26 are not enrolled in either course.

(a) How many students were surveyed?

$$
116+38+11+26=191
$$

(b) How many students are enrolled in exactly one of the two courses mentioned here?

$$
116+11=127
$$

(c) How many students are enrolled in Business Calculus or Chemistry?

$$
116+38+11=165
$$

(d) If a student is selected at random what is the probability that the student was enrolled in at most one of the subjects?
or or

$$
\begin{aligned}
& 1116+11 \\
& \frac{153}{191}=0.801
\end{aligned}
$$

(e) If a student is selected at random what is the probability that the student was enrolled in exactly one of the subjects?

$$
\frac{127}{191}=0.665
$$

letters $A-7: 26$ Digits - 0-9! 10
2. A license plate consists of 3 letters followed by 4 digits. How many license plates are possible if:
(a) The 1st letter can't be O and the first digit has to be even, and no repetition of letters or digits is allowed.

$$
\text { NO O' }^{\prime} \rightarrow 25 \cdot 25.24 .-8.7=30240000
$$

(b) The letters are vowels, the first and last digits are the same and repetition is allowed for the letters but no repetition is allowed for digits.

$$
\underline{5} \underline{5} \underline{5} \underline{10} \underline{q} \underline{8} \underline{1}=90,000
$$

3. A restaurant offers 6 . appetizers, 4 salads, 8 entrees, and 5 desserts. In how many ways can a customer select:
(a) One meal consisting of an appetizer, a salad, an entrée, and a dessert.

$$
{ }^{6} c_{1} \cdot{ }^{4} c_{1} \cdot{ }^{8} c_{1} \cdot{ }^{5} c_{1}=64.8 \cdot 8 \cdot 5=960
$$

(b) One meal consisting of two appetizer, a salad, an entree, and a dessert and another meal consisting of an appetizer, two salads, two entrees, and a desert.

$$
=7440
$$

4. In how many ways can a president, vice-president and a secretary be chosen from 22 members of a club, if one person cannot hold more than one position and all 22 members are eligible for any position?

5. Identify whether its a permutation or combination problem and solve the following:
(a) A committee consists of 11 people. In how many ways can a subcommittee of 4 people be chosen?
Combination
(b) In how many ways can 4 people be made to seat in 11 chairs.

Permutation $P(11,4)$
6. (a)How arrangements are possible of the word MISSISSIPPI?
$\frac{11!}{4!41,21} \quad$ Total 11 letters

$$
4-I \quad 2-D
$$

(b)In how many arrangements of the word MISSISSIPPI the P's are always toether?

$$
\frac{10!}{4!.4!} \quad \begin{gathered}
\text { MlSsISSIP! } \\
4-s
\end{gathered} \quad 4-I
$$

7. A coin is flipped 20 times.
(a) What is the total number of outcomes?

$$
2^{20}=1048576
$$

Probability
(b) In how many outcomes do exactly 10 tails occur?

$$
C(20,10)=184756
$$

(c) In how many outcomes do at least 18 tails occur?

187 or 197 or $20 \bar{T}$
c(20,10)

$$
\frac{(c 20,10)}{2^{20}}
$$

$$
\frac{211}{2^{20}}
$$

$$
c(20,18)+c(20,19)+c(20,20)=211
$$

$\left.1048.3652^{20}-[C(20,18)+c(20,19)+c(20,20)]\right] \frac{1048365}{1048576}$
8. A crate of 17 apples contains 4 rotten apples. Seven apples are chosen at random from the crate.
Probed (na) How many yecetiones contain 3 rotten apple?

$$
\frac{C(4,3)}{\left.\left(A^{2} 0^{7}\right)^{7}\right)} C(4,3) \cdot C(13,4)
$$

$2 R, 3 R 4 R$

$$
C(4,2) C(13,5)+\bar{c}(4,3) C(13,4)+C(4,4) C(1,3)
$$

GR

$$
C(17,7)-c(13,6) c(4,1)-c(13,7) \cdot C(1,0)
$$

$\theta R \quad \sigma I R$
(c) How many selections contain at most 1 rotten apple?

$$
C(4,0) \cdot C(13,7)+C(4,1) C(13,6)
$$

9. A judge has a jury pool of 40 people that contains 22 women and 18 men. She needs a jury of 12 people.
(a) What is the probability that the jury contains 8 women?

$$
\frac{c(22,8) \cdot C(18,4)}{c(40,12)}
$$

(b) What is the probability that at most 10 men are on the jury?

ONorm $2 \mathrm{M} \ldots 10 \mathrm{M}$ OR 11 M .12 M

$$
1-\frac{C(18,1) \cdot C(22,1)+C(18,12) c(22,0)}{C(40,12)} 0.999
$$

(c) What is the probability that at least 11 women are on the jury?

11 w 12 w

$$
\frac{C(22,11) \cdot c(18,1)+c(22,12) c(98,1)}{c(40,12)^{2}} 0.0024
$$

10. Let E and F be two events with $P\left(E^{c}\right)=0.7$ and $P(F)=0.2$ and $P(E \cup F)=0.35$. Find:
only E
(a) $P\left(E \cap F^{c}\right)=0.15$
(b) $P\left(E^{c} \cup F^{c}\right)=P(E \cap F)^{c}=1-P(E \cap F)=1-0.15=0.85$
(c) $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.15}{0.2}=0.75$
(d) $P\left(F \mid E^{c}\right)=\frac{P\left(F \cap E^{c}\right)}{P\left(E^{c}\right)}=\frac{0.05}{0.7}=0.0714$

$$
\begin{aligned}
& 0.0714 \\
& P(E)=1-P\left(E^{4}\right) \\
&=1-0.7=0
\end{aligned}
$$

$$
\begin{aligned}
& =1-r \\
& =1-0.7=0.3
\end{aligned}
$$

$P(E \cup F)=0.35$
$P(F)=0.2$
$P(E \cap F)=P(E)-P l o n l y$

$$
0.65_{E}
$$

$$
=0.3-0.15
$$

$1-(0.15+0.15+0.05)$

$$
1-(0.3+0.25+0.2)=0.25
$$

11. Let E and F be two events with $P(E)=0.55$ and $P(E \cap F)=0.25$ and $P\left(E \cup F^{c}\right)=$

$$
\begin{aligned}
& P\left(E \cup F^{c}\right)-P(E) \\
& =0.75-0.55=0.2 \\
& -P(\text { only } E)=P(E)-P(E \cap F) \\
& =0.55-0.25 \\
&
\end{aligned}=033 口 \begin{aligned}
& =0.2
\end{aligned}
$$

$$
\text { (a) } P(E \cap F)^{c}=0.3+0.25+0.2=0.75
$$

$$
\text { (b) } P\left(E^{c} \cap F^{c}\right)=P(E \cup F)^{C}=0.2
$$

$P(F)$

$$
=0.5
$$

$$
P\left(F^{c}\right)
$$

$$
\begin{aligned}
& \text { (c) } P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{0.25}{0.55}=0.4545 \\
& \text { (d) } P\left(E \mid F^{c}\right)=\frac{P\left(E \cap F^{c}\right)}{P(F C)}=\frac{P(o n l y E)}{1-P(E)}=\frac{0.3}{1-0.5}=\frac{0.3}{0.5}=0.1
\end{aligned}
$$

$=\boldsymbol{\gamma} . \boldsymbol{\zeta}$ 12. Two dice are thrown and the uppermost numbers are observed. What is the probability:
(a) The sum is six.

$$
\begin{gathered}
(1,5),(5,1),(2,4),(4,2),(3,3) \\
P(\operatorname{sum} 6)=\frac{5}{36}
\end{gathered}
$$

(b) The second number is twice the first number.

$$
(1,2),(2,4)(3,6) \frac{3}{36}=\frac{1}{12}
$$

At least twice:

$$
\begin{aligned}
& (1,2)(1,3)(1,4)(1,5)(1,6) \\
& (2,4)(2,5)(2,6) \\
& (3,6)
\end{aligned} \frac{9}{36}=\frac{1}{4}
$$

(c) The sum is at mos ${ }^{2}$,

Sun +

$$
\begin{array}{ll|l}
2:(1,1) & \frac{10}{36} & \begin{array}{l}
\text { sun } \\
3
\end{array}:(1,2)(2,1) \\
4 & \text { at least } 10 \\
5:(1,3)(3,1)(2,2) & (1,4)(4,1)(2,3)(3,2) & \\
10 & (6,4)(4,6)(5,5) \\
11 & (6,5)(5,6) \\
12 & (6,6) \\
\text { Prob }=\frac{6}{36}=\frac{1}{66}
\end{array}
$$

13. A bag contains 7 red and 8 yellow balls. Find the probability:
(a) If two balls are drawn at random with replacement, the second ball is red.

$$
\begin{aligned}
& \left(R_{1} R\right) \\
& \frac{7}{15} \cdot \frac{7}{15}+\frac{8}{15} \cdot \frac{7}{15}
\end{aligned}
$$

(b) If two balls are drawn at random without replacement, the second ball is red.

$$
\begin{aligned}
& (R, R)(Y, R) \\
& \frac{7}{15} \frac{6}{14}+\frac{8}{15} \cdot \frac{7}{14}
\end{aligned}
$$

(c) If two balls are drawn at random without replacement, the first ball is red if it is known the second ball is yellow.

14. Companies A, B. and C produce $10 \%, 40 \%$ and 50% respectively of a certain product. It has been found that 1% from A, $1 \frac{1}{2} \%$ from B and 2% from C are defective. One of these products is chosen at random.

$$
\begin{aligned}
& 0.1-A=\begin{array}{ccc}
0 & 0 & 01- \\
\text { ND } & 0.99
\end{array} \\
& 04^{-B}=\begin{array}{l}
D 0.0155^{-} \\
N 0.985^{-}
\end{array} \\
& 0.5-C={ }^{D} 10.028 \\
& \text { (a) Find the probability the product is defective. } \\
& P(D)=(0.1)(0.01)+(0.4)(0.01)+(0.5)(0.02) \\
& =0.017
\end{aligned}
$$

(b) Find the probability the product is defective and that it was produced by Company C.
$P(D \cap C)=(0.5)(0.02)=0.01$
(c) Find the probability that it produced by Company C, given it was defective.

$$
P(C \mid D)=\frac{P(C \cap D)}{P(D)}=\frac{(0.5)(0.2)}{\begin{array}{c}
0.017 \\
P \operatorname{tot}(a)
\end{array}}=0.5882
$$

15. Urn 1 contains 30 blue and 20 green marbles. Urn 2 contains 20 blue and 25 green marbles. An urn is chosen at random with equally likely probability, then a marble is chosen.

$$
\begin{aligned}
& 0.5 \text { - I } \\
& \text { - } B \frac{30}{50} \\
& G \frac{20}{50} \\
& 0.5-\text { II }=G_{G_{25 / 45}^{20}}^{\frac{20}{45}} .
\end{aligned}
$$

(a) What is the probability that the marble chosen was green?

$$
P(G)=6.5)\left(\frac{20}{50}\right)+(6.5)\left(\frac{25}{45}\right)=0.4778
$$

(b) What is the probability the marble was green, given that it was taken from Urn 2.

$$
P(G \mid I)=\frac{25}{45}
$$

(c) What is the probability Urn 1 was chosen, if the marble was green?

$$
\begin{aligned}
& P(I \mid G)=\frac{P(I \cap G)}{P(G)}=\frac{(0.5)\left(\frac{20}{50}\right)}{04778}=0.4186 \\
& \mathcal{* O}^{-} P(I \mid B)=\frac{P C I n B)}{P(B)}=\frac{(0.5)\left(\frac{30}{50}\right)}{1-P(G)} \\
& P(B)=1-P(G) \quad R P(B)=(0.5)\left(\frac{30}{50}\right)+(0.5)\left(\frac{20}{45}\right)
\end{aligned}
$$

Popper M川(\#26) $11-5: B$
16. Consider the give Venn diagram. The numbers represents the number of elements in following set region.Find:

(a) $n\left(C \cup A^{c}\right)=11+9+8+6+13+8$
(b) $n\left(B^{c} \cap A\right)^{c}=n\left(B \cup A^{C}\right)=11+4+9+6+13+8$
(c) $n\left(C \cup(A \cap B)^{c}\right)=7+11+9+8+6+13+8$
(d) $n\left(A^{c} \cap\left(B^{c} \cup C\right)\right)=6+13+8$
(e) $n\left(B \cup\left(A \cup C^{c}\right)^{c}\right)=n\left(B \cup\left(A^{C} \cap C\right)\right)=11+4+9+6+13$
17. Lets try a variation of our Panda express problem with Chipotle You wish to have food form Chipotle. You ordering online for delivery has a probability of 0.6 . If you order online, you are likely to order burrito bowl with probability 0.75 . If you go in store you are likely not to order burrito bowl with probability 0.45 . What is the probability of:

$$
\begin{aligned}
& \text { probability } 0.45 \text {. What is the probability of } 0.75 \\
& 0.6 \text { - Online } N B C(1-0.75) .
\end{aligned}
$$

(a) Not ordering burrito bowl.

$$
P(N B B)=(0.6)(0.25)+(0.4)(0.45)=0.33
$$

(b) Ordering burrito bowl if you have gone to the store.

$$
P(\text { BB|Instore })=0.55 \left\lvert\, \begin{aligned}
& \text { (order BD } \& \text { In } \\
& =(04)(0.55)
\end{aligned}\right.
$$

(c) Going to store if you have not ordered burrito bowl.

$$
\begin{aligned}
P(\text { Instore } \mid N B B) & =\frac{P(\text { In store } N B B)}{P(N B B)} \\
& =\frac{(0.4)(0.45)}{(0.33)}=0.5455
\end{aligned}
$$

