Depriciation $=$ decrease in value
scrapvalue $=$ remaining value
Section 1.5A
Linear Functions and Math Models

$$
\begin{array}{r}
250000 \\
\hline 10000 \\
\hline 240000
\end{array}
$$

Simple Depreciation
Example 1: In 2000, the B\&C Company installed a new machine in one of its factories at a cost of $\$ 250,000$. The machine is depreciated linearly over 10 years with a scrap value of $\$ 10,000$.
(time, value) a. Find the rate of depreciation for this machine.
(0, 250000) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { scrap.v -intval }}{\text { time }}=\frac{10070-250000}{10}$ $(10,10000)$

$$
=-24,000
$$

b. Find an expression for the machine's book value in the t-th year of use $(0 \leq t \leq 10)$.
$V(t)=m t$ +initial value $\quad V(t)=-24000 t+250000$
c. Find the machine's book value at the end of the $7^{\text {th }}$ year.

$$
v(7)=-24000.7+250000=\$ 82,000
$$

Example 2: A company car has an original value of $\$ 35,250$ and it will be depreciated linearly over 5 years with a scrap value of $\$ 7,000$.
(time, value) a. Find the rate of depreciation for this car.

$$
\begin{gathered}
(0,35250) m=\frac{(7000-35250)}{5}=-5650 \\
(5,7000) \\
7000-35250 / 5
\end{gathered}
$$

b. Find an expression for the car's book value in the t-th year of use ($0 \leq t \leq 5$).

$$
\begin{aligned}
v(t) & =m t+\text { initial value } \\
& =-5650 t+35250
\end{aligned}
$$

(6) What the value after 3 years?

$$
v(3)=-5650(3)+35250=\$ 18300
$$

Section 1.5A - Linear Depreciation; Cost, Revenue, Profit Functions

Linear Cost, Revenue and Profit Functions
Let x be the number of units of a product manufactured or sold at a company then:
The cost function, $C(x)$, is the total cost of manufacturing x units of the product.
Fixed costs are costs that remain more or less constant regardless of the company's activity level.

Example: rental fees and executive salaries
Variable costs are costs that vary with production or sales.
Example: wages and costs for raw material
The revenue function, $R(x)$, is the total revenue realized from the sale of x units of the product.

The profit function, $P(x)$, is the total profit realized from manufacturing and selling x units of the product.

Formulas
Suppose a company has fixed cost of F dollars, production cost of c dollars per unit and
selling price of s dollars per unit then

$$
\begin{aligned}
& x=10 \\
& s=\$ 7
\end{aligned}
$$

$$
C(x)=c x+F
$$

$$
R(x)=\$ 70
$$

$$
R(x)=s x
$$

$$
P(x)=R(x)-C(x)=(s-c) x-F
$$

$$
P=70-150^{\prime}!
$$

where x is the number of units of the product produced and sold.
, Example 2: A manufacturer has a monthly fixed cost of $\$ 100,000$ and a production cost of $\$ 14$ for each unit produced. The product sells for $\$ 20$ per unit.
a. Find the cost, revenue and profit functions.
b. Compute the profit (loss) corresponding to production levels of 15,000 units and 27,500 units.

$$
\begin{aligned}
& P(15000)=6(15000)-100000=-\$ 10,000 \text { (Loss) } \\
& P(27500)=6(27500)-100000=\$ 65,000 \text { (Profit) }
\end{aligned}
$$

Example 3: A company that manufactures motorcycle helmets has monthly fixed costs of $\$ 55,000$ and cost of $\$ 21$ per helmet. The selling price for each unit is $\$ 41$.
a. How many helmets must the company produce and sell if they wish to make a profit of $\$ 50,000$?

$$
\begin{aligned}
& C(x)=21 x+55000 \\
& R(x)=41 x \\
& P(x)=41 x-(21 x+55000)=20 x-55000 \\
& 20 x-55000=50000 \\
& 20 x=105000 \quad x=5250 \text { helmets }
\end{aligned}
$$

b. What is the profit (loss) if they produce and sell 3500 helmets?

$$
\begin{aligned}
P(3500) & =20(3500)-55000 \\
& =\$ 15,000(\text { Profit })
\end{aligned}
$$

