Section 1.5B Break Even Analysis

When a company neither makes a profit nor sustains a loss this is called the breakeven level of operation.

Note: The break even level of operation is represented by the point of intersection of two lines.

The break even level of production means the profit is zero. This means
$P(x)=R(x)-C(x)=0$, which implies that $R(x)=C(x)$.
Consider the following graph:

The point of intersection above, (x_{o}, y_{o}), is referred to as the breakeven point.
$x_{o}=$ break even quantity
$y_{o}=$ break even revenue
-re
If $x<x_{o}$ then $R(x)<C(x)$. Hence, $P(x)=R(x)-C(x)<0$ which indicates a LOSS.
tee

If $x>x_{o}$ then $R(x)>C(x)$. Hence, $P(x)=R(x)-C(x)>0$ which indicates a PROFIT.

units Revenue

Example 1: A company has a breakeven point of $(1,575, \$ 125,000)$. If it produces and sells 2,000 units would the company make a profit or sustain a loss? How do you know?

If $x=1325$

$2000>1575$

$x_{0}=1575$
$x=2000$
Example 2: A company has a profit function of $P(\lambda)=32 x-300,000$.
a. What is the break even quantity?

$$
\begin{aligned}
32 x-300000 & =0 \\
32 x & =300000 \\
x & =9375 \text { units }
\end{aligned}
$$

b. How many units must the company produce and sell to make a profit of $\$ 84,000$?

$$
\begin{gathered}
32 x-300000=84000 \\
x=12000 \text { units }
\end{gathered}
$$

$$
\begin{aligned}
& P(x)=0 \quad R(x)=C(x) \\
& P(x)=R(x)-C(x)=0
\end{aligned}
$$

Example 3: Find the breakeven quantity and breakeven revenue if $C(x)=32 x+375000$ and $R(x)=62 x$

$$
\begin{aligned}
32 x+375000 & =62 x \\
375000 & =30 x \\
x & =12500 \text { items } \\
R(12500)=62(12500) & =\$ 775000
\end{aligned}
$$

breakeven quantity: 12500
Example 4: The XYZ Company has a fixed cost of 200,000, a production cost of $\$ 12$ for each unit produced and a selling price of $\$ 20$ for each unit produced.
a. Find the breakeven point for the company.

$$
\begin{aligned}
& \text { a. Find the breakeven point for the company. } \\
& \begin{array}{c}
C(x)=12 x+200000 \\
C(x)=R(x)
\end{array} \quad R(x)=20 x \\
& 12 x+200000=20 x \\
& 200000=8 x \\
& x=25000
\end{aligned} \quad(25000,5000000) \text { } \begin{array}{r}
\\
R(25000)=20(25000)=\$ 500000
\end{array}
$$

b. If the company produces and sells 33,000 units, would it have a profit or loss?

$$
33000>25000 \text { Profit }
$$

c. If the company produces and sells 40,000 units, what would be the profit?
$4000>2500$ Profit

$$
\begin{aligned}
& R(4000)=20(40000)=\$ 800000 \\
& C(40000)=12(40000)+200000=\$ 680000
\end{aligned}
$$

Section 1.5B - Break-Even Analysis

$$
\begin{aligned}
P(40000) & =800000-680000 \\
& =\$ 120000
\end{aligned}
$$

Example 5: Iota Airplane Supplier manufactures a certain airplane part for small airplanes. Each part sells for $\$ 250$ and the variable cost of producing each unit is 42% of the selling price. The manufacturer's monthly fixed cost is $\$ 638,000$. What is the manufacturer's break-even point?

$$
\begin{aligned}
& R(x)=250 x \\
& \text { variable cost }=42 \% \text { of } \$ 250 \\
&=\frac{42}{100} \times 250=\$ 105 \\
& C(x)=105 x+638000 \\
& C(x)=R(x) \\
& 105 x+638000=250 x \\
& 638000=145 x \\
& x=4400 \\
& \text { Break even quanity }=4400 \\
& \text { Break even Revenue }=250(4400) \\
&=\$ 1100000 \\
&(4400,1100000)
\end{aligned}
$$

