Section 3.5
The Inverse of a Square Matrix
In this section we discuss a procedure for finding the inverse of a matrix and show how the inverse can be used to help us solve a system of linear equations.

Let A be a square matrix of size n. A square matrix A^{-1} of size n such that $A A^{-1}=A^{-1} A=I_{n}$ is called the inverse of \mathbf{A}.

$$
\begin{aligned}
& 2.1=2 \\
& 2 \cdot \frac{1}{2}=1
\end{aligned}
$$

Note: Not every square matrix has an inverse. A matrix with no inverse is called singular.

Example 1: Determine whether the following pairs of matrices are inverses of each other.
a. $\left(\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{cc}1 & -4 \\ -1 & 5\end{array}\right)$
b. $\left(\begin{array}{cc}-2 & -3 \\ 1 & 4\end{array}\right)$ and $\left(\begin{array}{cc}-4 / 5 & -6 / 5 \\ 1 / 5 & 4 / 5\end{array}\right)$

Check if:

$$
\begin{aligned}
& \left(\begin{array}{ll}
5 & 4 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -4 \\
-1 & 5
\end{array}\right)=I_{2} \\
& \left(\begin{array}{ll}
5(1)+4(-1) & 5(-4)+4(5) \\
5(1)+1(-1) & 1(-4)+1(5)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

If so, then must also check if:

Section 3.5 - The Inverse of a Square Matrix

Check if:

$$
\left(\begin{array}{cc}
-2 & -3 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
-4 / 5 & -6 / 5 \\
1 / 5 & 4 / 5
\end{array}\right)=I_{2}
$$

$$
\left.\begin{array}{l}
=\left(\begin{array}{ll}
-2\left(\frac{-4}{5}\right)+-3\left(\frac{1}{5}\right) & -2\left(-\frac{-4}{5}\right)+-3\left(\frac{4}{5}\right) \\
1\left(\frac{-4}{5}\right)+4\left(\frac{1}{5}\right) & \left.1+\frac{6}{5}\right)+4\left(\frac{4}{5}\right)
\end{array}\right) \\
=\left(\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right) w \\
\text { If }
\end{array}\right)
$$

If so, then must also check if:

$$
\begin{aligned}
& \left(\begin{array}{cc}
-4 / 5 & -6 / 5 \\
1 / 5 & 4 / 5
\end{array}\right)\left(\begin{array}{cc}
-2 & -3 \\
1 & 4
\end{array}\right)=I_{2} \\
& =\left(\begin{array}{cc}
-\frac{4}{5} \cdot\left[2+\frac{6}{5} \cdot 1\right. & -\frac{4}{5} \cdot 3+\frac{6}{5} \cdot 4 \\
\frac{1}{5}-22+\frac{4}{5} 11 & -\frac{1}{3} \cdot 3+34
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 / 5 & -12 / 5 \\
2 / 5 & 13 / 5
\end{array}\right) \\
& \text { Inverses? } \mathrm{NO}
\end{aligned}
$$

How to Find the Inverse of a Square Matrix

1. Adjoin the square matrix A with the identity matrix of the same size, $[A \mid I]$.
2. Use the Gauss-Jordan elimination method to reduce $[A \mid I]$ to the form $[I \mid B]$, if possible.

The matrix B is the inverse of the matrix A. It may be verified by checking $A B=B A=I_{n}$.
If in the process of reducing $[A \mid I]$ to $[I \mid B]$, there is a row of zeros to the left of the vertical line then the matrix does not have an inverse.

Example 2: Find the inverse of each matrix, if possible.
a. $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.

No inverse]
Bis singular $\left[\begin{array}{ccc|ccc}1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & -2 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1\end{array}\right]$

$$
\text { c. } \mathrm{C}=\left(\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad\left[\begin{array}{ccc|ccc}
3 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \square R_{1} \leftrightarrow R_{3}
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & -1 & -2 & 1 & 0 & -3
\end{array}\right]<
$$

$$
\left[\begin{array}{ccc|ccc}
\square & 0 & 1 & 0 & 0 & 1 \\
-\frac{1}{3} & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
R_{3}=R_{2}+R_{3} \quad \downarrow
$$

$$
R_{2}=R_{1}+R_{2}
$$

$$
R_{3}=-3 R_{1}+R_{3}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & -1 & 1 & 1 & -2
\end{array}\right] \xrightarrow{R_{3}=-R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & -1 & 2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& C^{1}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 1 & 2 & 0 & 1 & 0 \\
3 & 3 & 5 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{2}=-2 R_{1}+R_{2} \\
R_{3}=-3 R_{1}+R_{3}
\end{array}} \\
& \text { b. } B=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
3 & 3 & 5
\end{array}\right) \quad\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -3 & -4 & -2 & 1 & 0 \\
0 & -3 & -4 & -3 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Formula for the Inverse of a 2X2 Matrix
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Suppose $D=a d-b c$ is not equal to zero. Then. A^{-1} exists and is given by $A^{-1}=\frac{1}{D}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \quad$ If $D=0$ then there is no
"the matrix is singular
inverse

Example 3: Find the inverse of the following matrix.

$$
\begin{array}{lll}
\begin{aligned}
\text { a. } E=\left(\begin{array}{ll}
-5 & 10 \\
-2 & 7
\end{array}\right) & \text { b. } F
\end{aligned}=\left(\begin{array}{cc}
2 & 4 \\
-3 & -6
\end{array}\right) \\
=-5.7 & -(-2) \cdot 10 & \\
& =-35+20=-15 \neq 0 & \\
& =-6.2-3.4 \\
E^{-1} & =\frac{1}{-15}\left(\begin{array}{cc}
7 & -10 \\
2 & -5
\end{array}\right)=\left(\begin{array}{ll}
-7 / 15 & 2 / 3 \\
-2 / 15 & 1 / 3
\end{array}\right) \text { No inverse }
\end{array}
$$

The use of inverses to solve systems of equations is advantageous when we are required to solve more than one system of equations $\mathrm{AX}=\mathrm{B}$, involving the same coefficient matrix, A , and different matrices of constants, B .

The steps are:

1. Write the system of equations in matrix form, i.e., $\mathrm{AX}=\mathrm{B}$. A is the coefficient matrix, X is the variable matrix and B is the constant matrix.
2. Find the inverse of the coefficient matrix, A.

$$
\begin{aligned}
A X & =B \\
A^{-1} A X & =A^{-1} B \\
X & =A^{-1} B
\end{aligned}
$$

3. Multiply both sides by A^{-1}.
4. State the answer.

Example 4: Write each system of equations as a matrix equation, then solve the system using the inverse of the coefficient matrix.

$$
\begin{aligned}
& 2 x-2 y=12 \\
& -3 x+5 y=-8
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\left.\begin{array}{l}
2 x-2 y=0 \\
A^{-3 x+5 y=4} \\
A^{2} \\
-3 \\
-3
\end{array} x_{5}^{-2}\right]\left[\begin{array}{l}
B_{2} \\
\bar{x} \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
4
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
A=\left(\begin{array}{cc}
2 & -2 \\
-3 & 5
\end{array}\right)
$$

Now find the inverse of the coefficient matrix.

$$
\begin{aligned}
& \mathrm{D}=\mathrm{ad}-\mathrm{bc}=2 \cdot 5-(-2)(-3)=10-6=4 \neq 0 \\
& A^{-1}=\frac{1}{4}\left(\begin{array}{ll}
5 & 2 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
5 / 4 & 1 / 2 \\
3 / 4 & 1 / 2
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\begin{array}{l}
A X=B_{1} \\
X=A^{-1} B_{1}
\end{array} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left(\begin{array}{ll}
5 / 4 & 1 / 2 \\
3 / 4 & 1 / 2
\end{array}\right)\binom{12}{-8}} & \begin{array}{l}
A X=B_{2} \\
X=A^{-1} B_{2}
\end{array} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{4} \cdot 12+\frac{1}{2} \cdot-8 \\
\frac{3}{4} \cdot 12+\frac{1}{2} \cdot-8
\end{array}\right]=\left(\begin{array}{ll}
5 / 4 & 1 / 2 \\
y / 4 & 1 / 2
\end{array}\right)\binom{6}{4}} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
15-4 \\
9-4
\end{array}\right]=\left[\begin{array}{l}
11 \\
5
\end{array}\right]=\left[\begin{array}{l}
5 \\
y
\end{array}\right] \cdot 0+\frac{1}{2} \cdot 4} \\
3 \cdot 0+\frac{1}{2} \cdot 4
\end{array}\right]
$$

$A_{n \times n} B_{n \times n}$
$A B=n \times n \quad B A n \times n$
$A B \neq B A$ in general

* Matrix multiplication is not commutative in general
BUT
Matrix addition is commutative

$$
\begin{gathered}
A+B=B+A \\
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \\
A B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
1 & 0
\end{array}\right] \\
B A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] \neq B A
\end{gathered}
$$

