Section 4.1
Simple Interest, Future Value and Present Value
Interest that is computed on the original principal only is called simple interest.
Formula: $I=\operatorname{Pr} t$
where $P=$ principal (original)

$$
\begin{aligned}
& \mathrm{r}=\text { rate } \\
& \mathrm{t}=\text { time (in years) }
\end{aligned}
$$

The sum of the principal and interest after t years is called the accumulated amount.

$$
\text { Formula: } F=\overparen{P(1+r t)}=P+P_{\gamma} z=P+I
$$

Example 1: Find the simple interest on a $\$ 1,000$ investment made for 3 years at an interest rate of 5% per year. What is the accumulated amount? $F ?_{0}$

$$
\begin{aligned}
& P=1000 \quad r=0.05 \quad t=3 \\
& I=P_{\gamma} t=1000(0.05)(3)=\$ 150 \\
& F=1000+150=\$ 1150
\end{aligned}
$$

Example 2: Find the simple interest rate at which $\$ 1,000$ will grow to $\$ 1,050$ in 9 months.

Earned interest that is periodically added to the principal and thereafter itself earns interest at the same rate is called compound interest.

Future Value with compound interest Formula:

where $i=\frac{r}{m}$ and $n=m t$.
F stands for the Future Value or the accumulated amount at the end of n conversion periods. A conversion period refers to the interval of time between successive interest calculations.
\mathbf{P} stands for the Present Value or principal.
\mathbf{r} stands for the interest rate per year.
\mathbf{m} stands for the number of conversion periods per year.
\mathbf{t} stands for time (in years).

4 quarterly monthly
Example 3: Find the accumulated amount after 5 years if $\$ 1700$ is invested at 6.25% per year compounded duanerely. F ? $F . V$ with $C I$

$$
\begin{array}{lll}
P=1700 & m=4 & \\
t=5 y \gamma 3 & i=\frac{0.0625}{4} & F=1700\left(1+\frac{0.0625}{4}\right)^{20} \\
r=0.0625 & n=4.5=20 & =\$ 2318.02
\end{array}
$$

Recall $\mathrm{F}=\mathrm{P}(1+i)^{n}$ and $\mathrm{P}=$ Present Value. Solving the Future Value formula for P we obtain the

Present Value with compound interest formula:

$$
P=F(1+i)^{-n}
$$

Example 4: A newborn child receives a $\$ 5,000$ gift towards a college education from her grandparents. How much will the $\$ 5,000$ be worth in 17 years if it is invested at 9% per year compounded quarterly?

$$
P=5000
$$

$$
t=17
$$

$$
i=\frac{0.04}{4}
$$

$$
\begin{aligned}
& \text { F. V with CI } \\
& F=P(1+i)^{n} \\
& =5000\left(1+\frac{0.09}{4}\right)^{68}
\end{aligned}
$$

$$
\begin{array}{lll}
r=0.09 & n=4.17 & =5000\left(1+\frac{0.09}{4}\right)^{68} \\
m=4 & =68 & 402707(0)
\end{array}
$$

$$
\begin{array}{lll}
r=0.09 & n=4.17 & =5000\left(1+\frac{0.01}{4}\right) \\
m=4 & =68 & =\$ 22702.60
\end{array}
$$

Example 5: In a certain area of a local town, housing costs have been increasing at 6\% per year compounded annually for the past 4 years. A house currently worth $\$ 200,000$ would have had what value 4 years ago? P.V. with C. I
$P=$?

$$
\begin{array}{lll}
F=200000 & P & =F(1+i)^{-n} \\
t=4 & i=\frac{0.06}{1} & \\
m=1 & =200000(1+0.06)^{-4} \\
r=0.06 & =0.06 & \\
n=4 & & \$ 158418.73
\end{array}
$$

Example 6: An Individual Retirement Account (IRA) has \$20,000 in it and the owner decides not to add any more money to the account other than interest earned at 8% per year compounded monthly. How much will be in the account 35 years from now when the owner reaches retirement age?
F. V. with. CI

$$
F ?
$$

$$
P=20,000
$$

$$
F=P(1+i)^{n}
$$

$$
\begin{aligned}
& r=0.08 \\
& t=35
\end{aligned} \quad i=\frac{0.08}{12}
$$

$$
n=12(35)
$$

$$
=420
$$

Example 7: Kaylin's son will be leaving to an out-of-state private university this year. Twenty years ago she set up an account to help pay for his college tuition. She pays out the total amount earned, which is $\$ 25,678.90$. How much did she originally invest in this account at the rate of 7% per year compounded monthly?

$$
\begin{aligned}
P & =? \\
F & =25678.90 \\
r & =0.07 \\
t & =20 \\
M & =12 \\
i & =\frac{0.07}{12} \\
n & =12(20)=240
\end{aligned}
$$

