Section 4.3
Amortization and Sinking Funds

To Amortize means to pay off a debt by installment payments.

Amortization Formula

The periodic payment E on a loan of P dollars to be amortized over n periods with interest charged at the rate of i per period is

$$
E=\frac{P i}{1-(1+i)^{-n}}
$$

Sinking Fund

A fund that is set up for a specific purpose at some future date is called a sinking fund.

Sinking Fund Formula

The periodic payment E required to accumulate a sum of F dollars over n periods with interest charged at the rate of i per period is

$$
E=\frac{i F}{(1+i)^{n}-1}
$$

Example 1: Kelly wishes to buy a car that costs $\$ 32,998$. The car dealer tells her that they can finance the car at 6.25% per year compounded monthly for 60 months. She decides to secure the loan from the dealer. How much will her monthly payments be?

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Amortization } \\
E=\frac{P i}{1-(1+i)^{-n}}
\end{array} \\
i=\frac{0.0625}{12} \\
n=60
\end{array} \quad \begin{array}{l}
1-\left(1+\frac{0.0625}{12}\right)^{-60}
\end{array}=\$ \begin{array}{l}
\text { Sinking Fund } \\
E=\frac{i F}{(1+i)^{n}-1}
\end{array} \\
& E=\$ 641.79
\end{aligned}
$$

Example 2: A person would like to have \$200,000 in an account for retirement 15 years from now. How much should be deposited quarterly in an account paying 6% per year compounded quarterly to obtain this amount?
Amortization
$E=\frac{P i}{1-(1+i)^{-n}}$

$$
E=
$$

$$
\begin{gathered}
i=\frac{0.06}{4} \\
n=4(15)=60 \\
\left(\frac{0.06}{4}\right) 200000=\$ 20
\end{gathered} \begin{aligned}
& \begin{array}{l}
\text { Sinking Fund } \\
E=\frac{i F}{(1+i)^{n}-1}
\end{array}
\end{aligned}
$$

$$
\left(1+\frac{0.06}{4}\right)^{60}-1
$$

Example 3: The cash price of the sailboat you wish to purchase is $\$ 16,000$. You pay 15% down and secure a loan for the remaining balance. How much are your monthly payments if 18% per year compounded monthly is charged over a period of 6 years?

Example 4: A company anticipates needing to replace one of their assembly line machines in 3 years at a cost of $\$ 25,000$. An account at their credit union pays 4.5% per year compounded monthly. How much would they need to deposit in this account each month to reach their goal in 3 years?

$$
\begin{array}{cl}
\substack{E=\frac{P i}{\text { Amortization }} \\
1-(1+i)^{-n}} & i=\frac{0.045}{12} \\
n=3(12)=36 & \begin{array}{l}
\begin{array}{l}
\text { Sinking Fund } \\
E=\frac{i F}{(1+i)^{n}-1}
\end{array} \\
E=\frac{\left(\frac{0.045}{12}\right) 25000}{\left(1+\frac{0.045}{12}\right)^{36}-1}
\end{array}, \$ 649.92
\end{array}
$$

Example 5: In order to expand their growing business, a company purchased a piece of property at a cash price of $\$ 450,000$. They made a $\$ 25,000$ down payment, and financed the rest through a lender. If the lender will charge 3.25% per year compounded semiannually for 7 years, find the company's semiannual payment.

$$
\begin{aligned}
& n=2(7)=14 \\
& P=450000-25000=425000 \\
& E=\frac{425000(0.0325 / 2)}{1-(1+0.0325 / 2)^{-14}}=\$ 34,186.03
\end{aligned}
$$

Try this one: You bought an RV at a cost of $\$ 125,000$. You made a down payment of $\$ 3,000$. How much are your monthly payments to the creditor over 20 years at 2.25% per year compounded monthly?

