Section 5.1
Sets
A collection of objects is called a set.
An object of a set is called an element.

$$
\{1,2,3,5,6\}
$$

Notation:
$\epsilon=$ "element of" belongs to

$$
\left.\begin{array}{l}
\{-1,-5,2,6,1\} \\
\{2,1,-5,6,-1\}
\end{array}\right\} \begin{gathered}
\text { sane }
\end{gathered}
$$

The set $C=\left\{x \mid x^{2}=9\right\}$ is in set builder notation. The set can also be written as follows: C $=\{-3,3\}$.

$$
N=\{x \mid x \text { is } 0
$$

$$
N=\{2,4,6,8\}
$$

Let A and B be two sets. If every element of A is also in B, A is said to be a subset of B.
Notation:

$$
A=\{1,2\} \quad B=\{1,2,3\}
$$

$\subseteq=$ "subset of"
$\nsubseteq=$ "not a subset of"
$A \leq B$
$B \notin A$ as B has ' 3^{\prime}

Example 1: Let $C=\{1,2,3,4,5,6\}, D=\{2,4,6\}, \mathrm{E}=\{2,1,6,4,3,5\}$, and $\mathrm{G}=\{1,4,6\}$. State whether each of the following statements are true or false.
I. $D \subseteq C$ True
II. $\mathrm{E} \nsubseteq \mathrm{C}$ False $C=E$
III. $D \subseteq G$ False $2 \notin G$ and $2 \in D$

The set A is a proper subset of a set B (Notation: $A \subset B$) if the following two conditions hold.

1. $A \subseteq B$

$$
A=\{1,2,3,4\} \quad B=\{1,2,3,4,5\}
$$

$$
A \subset B
$$

2. There exists at least one element in B that is not in A.

Example 2: Let $G=\{5,6,7,8,9,10\}, \mathrm{H}=\{5,8,10\}, \mathrm{I}=\{8,5\}$, and $\mathrm{J}=\{5,8\}$. State whether each of the following statements are true or false.
I. $\mathrm{H} \subset \mathrm{G}$

True
$H \subseteq G$ True
II. $\mathrm{H} \subset \mathrm{J}$

False
$H \neq J$
III. J $\subset \mathrm{H}$

True
iv. İ̇J $I \subseteq J$

True

$$
I=J
$$

A set that contains no elements is called the empty set. $\{0\} \rightarrow$ this is not an Note: We write Ø to denote the empty set. The symbol Ø is a subset of every set.

Example 3: Let $\mathrm{E}=\{x, y, z\}$. List all subsets of the set E .

$$
\phi,\{x\},\{y\},\{z\},\{x, y\},\{y, z\},\{x, z\},\{x, y z\}
$$

Which of the subsets of E are proper subsets?
$\phi,\{x\},\{y\},\{z\},\{x, y\},\{y, z\},\{x, z\}$
The Universal set is the set of interest in a particular discussion.
A Venn diagram is a visual representation of sets.

Some look like:

Let A and B be two sets. Set Union: $(A \bigcup B)=\{x \mid x \in A$ or $x \in B$ or both $\}$.
Let A and B be two sets. Set Intersection: $(A \cap B)=\{x \mid x \in A$ and $x \in B\}$.

If $A \cap B=\varnothing$, then we say that A and B are disjoint.
Let U be a universal set and $A \subseteq U$. Complement of a Set $A: \mathrm{A}^{c}=\{x \mid x \in \mathrm{U}, x \notin \mathrm{~A}\}$.

Some Set Operation Rules

Let U be a universal set and A and B be subset of U .

$$
\begin{aligned}
\varnothing^{c} & =\mathrm{U} \\
\mathrm{U}^{c} & =\varnothing
\end{aligned}
$$

$$
\begin{array}{ll}
\left(A^{c}\right)^{c}=A & A \cup \mathrm{~B}=\mathrm{B} \cup \mathrm{~A} \\
(\mathrm{~A} \cup \mathrm{~B})^{c}=\mathrm{A}^{c} \cap \mathrm{~B}^{c} & \mathrm{~A} \cap \mathrm{~B}=\mathrm{B} \cap \mathrm{~A} \\
(\mathrm{~A} \cap \mathrm{~B})^{c}=\mathrm{A}^{c} \cup \mathrm{~B}^{c} & \\
\text { De Morgans Law }
\end{array}
$$

Example 4: Let $\mathrm{U}=\{1,2,3,4,5\}, \mathrm{A}=\{1,2,4,5\}, \mathrm{B}=\{4,5\}$, and $\mathrm{C}=\{2,3,4\}$.

$$
\begin{aligned}
& \text { Find the given sets. } \\
& \begin{array}{l}
\text { a. }(\mathrm{A} \cup \mathrm{~B})=\{1,2,4,5\} \cup\{4,5\}, 1 \text { given sets. } \\
\text { a }
\end{array} \\
& =\{1,2,4,5\} \\
& \text { b. (} \mathrm{A} \cap \mathrm{C})=\{1,2,4,5\} \cap\{2,3,4\} \\
& =\{2,4\} \\
& \text { c. } \mathrm{B}^{\text {c }}=\{1,2,3\} \\
& \text { d. }\left(A \cup C C^{c}\right)=\{1,2,4,5\} \cup\{1,5\} . \\
& =\{1,2,4,5\} \\
& \text { e. }\left(\left(\cap \cap B^{\circ}\right)^{\circ}=\{\{2,34\} \bigcap\{1,2,3\}\}^{C}\right. \\
& =\{2,3\}^{c}=\{1,4,5\} \\
& \text { f. (CCU(BпA)) }=\{1,5\} \cup(\{4,5\} \cap\{1,2,4,5\}) \\
& =\{1,5\} \cup\{4,5\} \\
& =\{1,4,5\}
\end{aligned}
$$

$$
=A^{c} \cup B^{C}
$$

Example 5: Use shading to state the regions) that represents) the given set. (Assume the given sets are not disjoint. This is obvious from the Venn diagrams.)
a. $\left(\mathrm{A} \cap B^{c}\right)$

$$
\begin{aligned}
& =\{I, \Pi\} \cap\{I, N\} \\
& =\{I\}
\end{aligned}
$$

b. $\left(\mathrm{A}^{c} \cup B\right)$

$A^{C} \cap B$
$=\{I I, v i\}$

c. $(A \cup(B \cap C))$

d. $\left((A \cup B)^{c} \cap C\right)$

$(p \cap C)$
e．$\left((B \cap C)^{c} \cap A^{c}\right)$

f．$\left(\left(C^{c} \cap B^{c}\right) \cup A\right)$

 $\cap\{$ II，可，可，VIII $\}$
$=\{\underline{I I}, \underline{\pi}, \underline{\text { vil }}\}$

$$
\begin{aligned}
& =\{I, \text { VIII }\} \cup\{I, I, V, V, I I\} \\
& =I_{1} \text { II, 正浯, VाI }
\end{aligned}
$$

Example 6：Let U denote the set of all employees at a certain company．Let $\mathrm{V}=\{x \in \mathrm{U} \mid x$ likes to read Vogue magazine $\}$ ，
$\mathrm{P}=\{x \in \mathrm{U} \mid x$ likes to read People magazine $\}$ ，and $\mathrm{T}=\{x \in \mathrm{U} \mid x$ likes to read Time magazine $\}$ ．

Assume none of these sets are disjoint．
a．Describe the given set in words．
i． $\mathrm{T}=$ the set of all employees at this company that like

to read time magazine
ii． $\mathrm{V} \cap \mathrm{P}==$ the set of all employees at this company that like to read both vogue \＆People
iii．$(\mathrm{P} \cup \mathrm{V})^{c}=$ the set of all employees at this company that
do not like to read Vogue or People
b. Describe the given statement in set notation.
i. The set of all employees at this company that like to read all three magazines.

$$
V \cap P \cap T
$$

ii. The set of all employees at this company that like to read Time or People magazines.
TOP
iii. The set of all employees at this company that like to read Time or People magazines, but not Vogue.

$$
(T U P) \cap v^{C}
$$

TU(P@V事)X

iv. The set of all employees at this company that like to read only Time magazine.

