Section 5.3 The Multiplication Principle

Generalized Multiplication Principle

Suppose a task T₁ can be performed in N₁ ways, a task T₂ can be performed in N_2 ways,..., and, finally a task T_n can be performed in N_n ways. Then the number of ways of performing the tasks $T_1, T_2, ..., T_n$ in succession is given by the product

$$N_1 \bullet N_2 \bullet \dots \bullet N_n$$
.

Example 1: A coin is tossed 3 times, and the sequence of heads and tails is recorded.

a. Determine the number of outcomes of this activity.

$$\frac{2}{2}$$
, $\frac{2}{2}$, $\frac{2}{2}$ = 8

b. List the outcomes of this experiment by first drawing a tree diagram.

<u>Burger</u>	<u>Sides</u>	<u>Beverages</u>	<u>Desserts</u>
Single Meat	Fries	Tea	Cheesecake
D ouble Meat	Onion Rings	✓ Coffee	B rownie
_	Fruit Bowl	Soda	Cookie
	Cheddar Peppers		Ice Cream Cone

If a customer chooses 1 item from each category, how many meals can be made? List 1 meal possible.

1

$$\frac{2}{2} \cdot \frac{4}{4} \cdot \frac{3}{4} = 96$$

DM, FB, C, B

Example 3: An identification number for employees at a certain company contains <u>six</u> <u>digits</u>. How many ID numbers are possible if repetition is allowed?

Example 4: A license plate consists of 2 letters followed by 4 digits. How many license plates are possible if the 1st letter can't be O, the 1st digit can't be 0 and no repetitions are allowed?

$$\frac{25}{9}$$
 $\frac{25}{9}$ $\frac{9}{9}$ $\frac{9}{8}$ $\frac{7}{7}$ = 2836000

Example 5: In the original plan for area codes in 1945, the first digit could be any number from 2 through 9, the second digit was either 0 or 1, and the third digit could be any number except 0. With this plan, how many different area codes were possible?

$$2-9 \rightarrow 8$$
 choices
 $0-1-7$ 2 choices
 $1-9-7$ 9 choices

Example 6: Six performers are to present their comedy acts on a weekend evening at a comedy club. One of the performers insists on being the last stand-up comic of the evening. If this performer's request is granted, how many different ways are there to schedule the appearances?

$$5.4.3.2.1.1 = 120$$

Example 7: The call letters for radio station begin with K or W, followed by 3 additional letters. How many sets of call letters having 4 letters are possible? Repetition is allowed.

KUTW: 2 choices

Letters: 26
$$\frac{2}{2} = \frac{26}{26} = 35152$$