Section 5.3

The Multiplication Principle

Generalized Multiplication Principle

Suppose a task T_{1} can be performed in N_{1} ways, a task T_{2} can be performed in N_{2} ways,..., and, finally a task T_{n} can be performed in N_{n} ways. Then the number of ways of performing the tasks $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}$ in succession is given by the product

$$
\mathrm{N}_{1} \bullet \mathrm{~N}_{2} \bullet \ldots \bullet \mathrm{~N}_{n}
$$

Example 1: A coin is tossed 3 times, and the sequence of heads and tails is recorded.
a. Determine the number of outcomes of this activity.

$$
\underline{2} \cdot 2 \cdot \underline{2}=2^{3}=8
$$

b. List the outcomes of this experiment by first drawing a tree diagram.

Example 2: The Burger Bar offers the following items on its menu:

If a customer chooses 1 item from each category, how many meals can be made? List 1 meal possible.

$$
\begin{aligned}
& \underline{2} \cdot \frac{4}{D M} \cdot \frac{3}{D B} \cdot \underline{4}=96 \\
&
\end{aligned}
$$

$0-9$
Example 3: An identification number for employees at a certain company contains six digits. How many ID numbers are possible if repetition is allowed?
Rep : 10 10 10 10 $10 \quad 10=10^{6}$ Red
not allowed' 10 9 \& $7 \quad \underline{5}=151200$
Example 4: A license plate consists of 2 letters followed by 4 digits. How many license plates are possible if the 1 st letter cant be O, the 1st digit cant be 0 and no repetitions are allowed?

$$
\frac{25}{9} \cdot \frac{25}{\text { Not }} \cdot \frac{9}{n o t} \cdot-\frac{8}{n} \cdot 7=2835000
$$

Example 5: In the original plan for area codes in 1945, the first digit could be any number from 2 through 9 , the second digit was either 0 or 1 , and the third digit could be any number except 0 . With this plan, how many different area codes were possible?
2-9 $\rightarrow 8$ choices
$0-1 \rightarrow 2$ choices

$$
8.2 .9=144
$$

$1-9 \rightarrow 9$ choices

Example 6: Six performers are to present their comedy acts on a weekend evening at a comedy club. One of the performers insists on being the last stand-up comic of the evening. If this performer's request is granted, how many different ways are there to schedule the appearances?
$\underline{5} \cdot \underline{4} \cdot \underline{3} \cdot \underline{2} \cdot 1 \cdot 1=120$

Example 7: The call letters for radio station begin with K or W , followed by 3 additional letters. How many sets of call letters having 4 letters are possible? Repetition is allowed.
Kor: 2choices letters: 26

$$
\underline{2} \quad \underline{26} \quad \underline{26} \quad \underline{26}=35152
$$

