Section 6.1
Experiments, Sample Spaces, and Events
An experiment is an activity with observable results (outcomes). en tossing coin, roblingdie A sample point is an outcome of an experiment. $\{1+\{,\{T\} ;\{1\}\{2\} \ldots . .\{6\}$ A sample space is a set consisting of all possible sample points of an experiment. Rif, T\} ~
A Finite Sample Space is a sample space with finitely many outcomes. $\{1,2,3,4,5,6\}$

An event is a subset of a sample space of an experiment.
Since an event is defined in terms of a set, it should make sense that we will use what we covered in Chapter 5 in our study of experiments and events.

The union and intersection of two events (sets) is defined the same as before.
If the intersection between two events is equal to the \varnothing, then E and F are called mutually exclusive.

Example 1: Consider the experiment of tossing a six-sided die.

a. Describe the sample space, S , of this experiment.

$$
S=\{1,2,3,4,5,6\}
$$

b. Describe the event E that an even number is tossed and describe the event F that a multiple of 3 is tossed.

$$
E=\{2,4,0\} \quad F=\{3,6\}
$$

$E \cap F=\{6\} \quad E \& F$ are not mutually exclusive
c. Use part b to describe the event that E occurs but F does not occur. Then state the number of sample points in that set.

$$
E \cap F^{c}=\{2,4,6\} \cap\{1,2,4,5\}=\{2,4\}
$$

$$
\underline{2} \cdot \underline{2}=4 \text { outcomes }
$$

Example 2: An experiment consists of tossing a fair coin twice. How many outcomes contain at least one tail?

$$
S=\{H, T\}
$$

$1 T$ or $2 T$

$$
c(2,1)+c(2,2)=2+1=3
$$

IT

Example 3: An experiment consists of selecting a letter at random from the letters in the word CONSONANT.
a. What is an appropriate sample space for this experiment?

$$
S=\{C, O, N, S, A, T\}
$$

b. Describe the event "the letter selected is a vowel."

$$
V=\{0, A\}
$$

Example 4: An experiment consists of rolling a pair of fair dice and observing the numbers that are on the uppermost surface of each die. Its sample space follows:

a. How many sample points have an odd sum?

$$
\left.\begin{array}{l}
(0, E) \quad 3 \cdot 3=9 \\
(E, O) 3=9
\end{array}\right] 18
$$

b. Describe the event that the sum of the outcomes is at most 3 .

$$
E=\{(1,1),(1,2),(2,1)\}
$$

