Section 6.1 Experiments, Sample Spaces, and Events

An event is a subset of a sample space of an experiment.

Since an event is defined in terms of a set, it should make sense that we will use what we covered in Chapter 5 in our study of experiments and events.

The **union and intersection** of two events (sets) is defined the same as before.

If the intersection between two events is equal to the Ø, then E and F are called **mutually** exclusive.

Example 1: Consider the experiment of tossing a six-sided die.

a. Describe the sample space, S, of this experiment.

S= 91,2,3, 4, 5,6}

b. Describe the event E that an even number is tossed and describe the event F that a multiple of 3 is tossed.

 $E = \frac{3}{2}, \frac{4}{6}$ $E = \frac{3}{6}$ $E = \frac{3}{6}$ $E = \frac{3}{6}$

c. Use part b to describe the event that E occurs but F does not occur. Then state the number of sample points in that set.

ENFC = 32,416] N 21,2,4,5 } = 32,4 }

2 . 2 = 4 out comes

Example 2: An experiment consists of tossing a fair coin twice. How many outcomes contain at least one tail? $S = \{H_{i}, \tau\}$

IT or 2T

 $C(2_{1}) + C(2_{1}2) = 2 + 1 = 3$

Example 3: An experiment consists of selecting a letter at random from the letters in the word CONSONANT.

a. What is an appropriate sample space for this experiment?

 $S = 3 (10) N_1 S, A, T_{f}$

b. Describe the event "the letter selected is a vowel."

V= 30, A6

Example 4: An experiment consists of rolling a pair of fair dice and observing the numbers that are on the uppermost surface of each die. Its sample space follows:

	•	•	<u>.</u>	••	•••	::
•	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
•.	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
•.	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
•••	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)
	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)
::	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)

 $E_{+}E_{-}=E_{-}$ $0+0=E_{-}$ $0+E_{-}=0$

a. How many sample points have an odd sum?

(0, E) 3.3 = 9 (E0) 3.3 = 9 18 b. Describe the event that the sum of the outcomes is at most 3. $E = \{(1,1), (1,2), (2,1)\}$