Section 7.3

Variance and Standard Deviation

The Variance of a random variable X is the measure of degree of dispersion, or spread, of a probability distribution about its mean (i.e. how much on average each of the values of X deviates from the mean.). Note: A probability distribution with a small (large) spread about its mean will have a small (large) variance.

Variance of a Random Variable X

Suppose a random variable has the probability distribution

\boldsymbol{x}	x_{1}	x_{2}	\cdots	x_{n}
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	p_{1}	p_{2}	\cdots	p_{n}

and expected value $\mathrm{E}(\mathrm{X})=\mu$. Then the variance of the random variable X is

$$
\operatorname{Var}(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\ldots+p_{n}\left(x_{n}-\mu\right)^{2}
$$

Note: We square each since some may be negative.

Standard Deviation measures the same thing as the variance. The standard deviation of a random variable X is

Note: As stated above the standard deviation measures the same thing as the variance. Since we square the $\left(x_{i}-\mu\right)$ s in the variance formula the units of x are squared, so to remedy this we take the square root.

Example 1: Given the following probability distribution, find its mean, variance and
standard deviation.

$$
\begin{aligned}
& +0.17(3-0.59)^{2}=2.7619 \\
& \sigma=\sqrt{2.7619}=1.6619
\end{aligned}
$$

Example 2: You record the length of time in minutes it takes you to drive from your home to school in 10 consecutive days. The probability distribution follows. Let the random variable X denote the number of minutes it takes you to drive from home to school. Calculate the mean and standard deviation.

Example 3: An investor is considering two business ventures. The anticipated returns (in thousands of dollars) of each venture are described by the following probability distributions:

	Venture 1		Venture 2	
Earnings	Probability	Earnings	Probability	
-5	0.2	-15	0.15	
30	0.6	50	0.75	
60	0.2	100	0.10	

a. The mean of Venture 1 is 29 and the mean of Venture 2 is 45.25 . Compute the standard deviation for each venture.

$$
\operatorname{Var}(x)=0.2(-5-29)^{2}+0.6(30-29)^{2}+0.2(60-29)^{2}=424
$$

Venture 1:

$$
\sigma=\sqrt{424}=20.59
$$

$$
\begin{aligned}
& \text { Venture } 2: \\
& \operatorname{rar}(x)= 0.15(-15-45.25)^{2}+0.75(50-45.27)^{2}+0.1(100-4527)^{2} \\
&=433.6875
\end{aligned}
$$

Venture 2:

$$
=433.6875
$$

b. Which investment would provide the investor with the higher expected return? venture 2
greater mean
c. Which investment would the element of risk be less?
venture I smaller variance

$$
\begin{aligned}
& E(x)=0.2(45)+0.3(48)+0.5(51) \\
& =48.9 \\
& \text { Standard Deviation: } \\
& \operatorname{Var}(\mathbb{} \text { (})=0.2(45-48.9)^{2}+0.3(48-48.9)^{2}+0.5(51-48.9)^{2} \\
& =5.49 \quad \sigma=\sqrt{5.49}=2.34
\end{aligned}
$$

Example 5: The Great Northwestern Lumber Company employs 400 workers in its mills. It has been estimated that X , the random variable measuring the number of mill workers who have industrial accidents during a 1- year period, is distributed with a mean of 30 and a standard deviation of 4 . Use Chebychev's Inequality to estimate the probability that the number of workers who will have an industrial accident over a 1-year period is between 20 and 40 , inclusive.

$$
>\frac{b}{a}
$$

$$
\begin{array}{ccc}
20=\mu-k \sigma & \sigma R & 40=\mu+k \sigma \\
20=30-4 k & 40=30+4 k \\
4 K=10 & 4 k=10 \\
k=\frac{10}{4}=\frac{5}{2} & k=\frac{5}{2}
\end{array}
$$

$$
=1-\frac{1}{\frac{25}{4}}
$$

$$
\begin{aligned}
& \mu-k \sigma \quad \mu=30 \quad \sigma=4 \\
& P(20 \leqslant x \leqslant 40) \geqslant 1-\frac{1}{k^{2}}=1-\frac{1}{\left(\frac{5}{2}\right)^{2}}
\end{aligned}
$$

