Section 7.5 – The Normal Distribution Section 7.6 – Application of the Normal Distribution

A random variable that may take on infinitely many values is called a **continuous** random variable.

A continuous probability distribution is defined by a function f called the **probability** density function.

The probability that the random variable X associated with a given probability density function assumes a value in an interval a < x < b is given by the area of the region between the graph of f and the x-axis from x = a to x = b.

The following graph is a picture of a normal curve and the shaded region is

Note: $P(a < X < b) = P(a \le X < b) = P(a \le X \le b) = P(a \le X \le b)$, since the area under one point is 0. The **area of the region under the standard normal curve to the left** of some value z, i.e. P(Z < z) or $P(Z \le z)$, is calculated for us in the **Standard Normal Cumulative Probability Table** found in Chapter 7 of the online book.

Standard Normal (mean)
$$\mu = D$$
 (sd) $\tau = 1$
 $\chi \sim N(0,1)$

Normal distributions have the following characteristics:

1. The graph is a bell-shaped curve.

The curve always lies above the x-axis but approaches the x-axis as x extends indefinitely in either direction.

2. The curve has peak at $x = \mu$. The mean, μ , determines where the center of the curve is located.

3. The curve is symmetric with respect to the vertical line $x = \mu$.

4. The area under the curve is 1.

5. σ determines the sharpness or the flatness of the curve.

6. For any normal curve, 68.27% of the area under the curve lies within 1 standard deviation of the mean (i.e. between $\mu - \sigma$ and $\mu + \sigma$), 95.45% of the area lies within 2 standard deviations of the mean, and 99.73% of the area lies within 3 standard deviations of the mean.

The Standard Normal Variable will commonly be denoted *Z*. The **Standard Normal Curve** has $\mu = 0$ and $\sigma = 1$.

Example 1: Let Z be the standard normal variable. Find the values of:

a.
$$P(Z<-1.91) = 0.028$$

b.
$$P(Z>0.5) = 1 - P(2<0.5) = 1 - 0.6915$$

= 0.3185

c. P(-1.65 < Z < 2.02)

$$= P(Z<2.02) - P(Z<-1.65)$$

$$= 0.9783 - 0.0495$$

$$= 0.9288$$

Example 2: Let Z be the standard normal variable. Find the value of z if z satisfies:

a.
$$P(Z < -z) = \frac{0.9495}{4}$$

$$-Z = 1.64 \Rightarrow Z = -1.64$$
b. $P(Z>,z) = 0.9115$ $P(Z>z) = 1 - P(Z>z)$

$$P(Zz) = 1 - 0.9115 = 0.0885$$

$$Z = -1.35$$

c. P(-z < Z < z) = 0.8444

Formula:
$$P(Z < z) = \frac{1}{2} [1 + P(-z < Z < z)]$$

When given a normal distribution in which $\mu \neq 0$ and $\sigma \neq 1$, we can transform the normal curve to the standard normal curve by doing whichever of the following applies.

$$P(X < b) = P\left(Z < \frac{b - \mu}{\sigma}\right)$$

$$P(X > a) = P\left(Z > \frac{a - \mu}{\sigma}\right)$$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Example 3: Suppose X is a normal variable with $\mu = 7$ and $\sigma = 4$. Find P(X > -1.35).

$$P(X)-1.35) = P(Z) - \frac{1.35 - 7}{4} = P(Z) - 2.08)$$

 $P(Z)-2.08) = P(Z < 2.08) = 0.9812$

Applications of the Normal Distribution

Example 4: The heights of a certain species of plant are normally distributed with a mean of 20 cm and standard deviation of 4 cm. What is the probability that a plant chosen at random will be between 10 and 33 cm tall?

$$P(10 < X < 33) = P(10-20 < 2 < \frac{33-20}{4})$$

$$= P(-2.5 < 2 < 3.25)$$

$$= P(Z < 3.25) - P(Z < -2.5)$$

$$= 0.9994 - 0.0062 = 0.9932$$

Section 7.5 – The Normal Distribution Section 7.6 – Applications of the Normal Distribution Example 5: Reaction time is normally distributed with a mean of 0.7 second and a standard deviation of 0.1 second. Find the probability that an individual selected at

random has a reaction time of less than 0.6 second.

$$P(X < 0.6) = P(Z < 0.6 - 0.7)$$

$$= P(Z < -1) = 0.1587$$

Approximating the Binomial Distribution Using the Normal Distribution

Theorem

Suppose we are given a binomial distribution associated with a binomial experiment involving n trials, each with probability of success p and probability of failure q. Then if *n* is large and *p* is not close to 0 or 1, the binomial distribution may be approximated by a normal distribution with $\mu = np$ and $\sigma = \sqrt{npq}$.

Example 6: Consider the following binomial experiment. Use the normal distribution to approximate the binomial distribution. A company claims that 42% of the households in a certain community use their Squeaky Clean All Purpose cleaner. What is the probability that between 15 and 28, inclusive, households out of 50 households use the cleaner?

Cleaner?
$$N = 50$$
 $P = 0.42$ $9 = 1 - P = 0.58$
 $M = NP = 50 (0.42) = 21$ $D = 10P9 = 150 (0.42) (0.58)$
 $P(15 \le X \le 28)$
 $P(14.5 \le Y \le 28.5)$
 $P(14.$

Section 7.6 – Applications of the Normal Distribution

$$N = 120 P = 0.75 q = 1-P = 0.25$$

 $M = NP = 120(0.75) = 90 T = \sqrt{NP9} = \sqrt{120(0.75)(0.21)} = 4734$

Example 7: Use the normal distribution to approximate the binomial distribution. A basketball player has a 75% chance of making a free throw. She will make 120 attempts. What is the probability of her making:

a. 100 or more free throws?

a. 100 or more free throws?

$$P(X \gg 100)$$

$$= P(Y \gg 99.5)$$

$$= P(Z \gg -90)$$

$$= P(Z \gg 2.00)$$

$$= P(Z \gg 2.00)$$
b. fewer than 75 free throws?

$$P(X \ll 74.5)$$

$$= P(Y \ll 74.5)$$

$$= P(X \ll 74.5)$$

$$= P(X$$

Example 8: Use the normal distribution to approximate the binomial distribution. A die is rolled 84 times. What is the probability that the number 2 occurs more than 11 times?

Is rolled 84 times. What is the probability that the number 2 occurs more than 11 times?

$$\begin{aligned}
& N = 84 & P = 16 & 9 = 56 \\
& M = nP = 84 \cdot (\frac{1}{6}) = 14 & \sqrt{=184 \cdot \frac{1}{6} \cdot \frac{1}{6}} = 3.4157 \\
& P(X > 11) \\
& = P(X > 11.5) = P(Y > 11.5) \\
& = P(Z > \frac{11.5 - 14}{3.4157}) \\
& = P(Z > -0.73) = P(Z < 0.73) \\
& \text{Section 7.5 - The Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal Distribution} \\
& \text{Section 7.6 - Applications of the Normal$$

= 1-P(Z<-0.73)=1-0.2327=0.7673