How to study: Study the class notes, take your practice test, review homework problems and quizzes, and try to do as many exercises as you can from the textbook. Note that answers are provided at the back of the book to all odd numbered problems. Here I provide some examples for you. This is not a complete list, studying only these examples is not enough!

1. Find the transpose of the matrix.

$$
\begin{array}{ll}
\text { (a) } A=\left[\begin{array}{ccc}
1 & -4 & 0 \\
2 & -1 & 2 \\
0 & -1 & 2 \\
1 & 3 & 5
\end{array}\right] & \text { (b) } B=\left[\begin{array}{ccccc}
2 & -1 & 3 & 5 & -2 \\
1 & -1 & 2 & -7 & 3 \\
4 & 6 & 2 \\
0 & 2 & 3 & 2 & 1 \\
0 & -2 & 1 & 1
\end{array}\right] \\
A^{\top}=\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
-4 & -1 & -1 & 3 \\
0 & 2 & 2 & 5
\end{array}\right] & B^{\top}=\left[\begin{array}{ccccc}
2 & 1 & 4 & 0 \\
-1 & -1 & 6 & 2 \\
3 & 2 & -3 & 3 \\
5 & -7 & 2 & -2 \\
-2 & 3 & 1 & 1 \\
-6 & 2 & 0 & 1
\end{array}\right]
\end{array}
$$

2. Solve the following.

$$
\begin{aligned}
& \text { (a) } 2\left[\begin{array}{ccc}
2 & 0 & -2 \\
-3 & -3 & -4 \\
1 & -2 & 7
\end{array}\right]-4\left[\begin{array}{ccc}
5 & -6 & -3 \\
-4 & 2 & 1 \\
3 & -5 & 6
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 0 & -4 \\
-6 & -6 & -8 \\
2 & -4 & 14
\end{array}\right]-\left[\begin{array}{ccc}
20 & -24 & -12 \\
-16 & 8 & 4 \\
12 & -20 & 24
\end{array}\right] \text { At } \\
& =\left[\begin{array}{ccc}
-16 & 24 \\
10 & -14 & -12 \\
-10 & 16 & -10
\end{array}\right]
\end{aligned}
$$

(b) $\left[\begin{array}{cccc}1 & -1 & 6 & -4 \\ 2 & 3 & -2 & -5\end{array}\right] \cdot\left[\begin{array}{ccc}2 & 7 & 11 \\ 3 & -4 & -2 \\ 1 & 5 & 1\end{array}\right]$ Not possible

$$
2 \times 4=3 \times 3
$$

4×4

$$
\begin{aligned}
& 4,2 \\
& \text { (c) }\left[\begin{array}{cc}
2 & -3 \\
0 & 4 \\
1 & 7 \\
-5 & -2
\end{array}\right]_{4 \times 2}\left[\begin{array}{cccc}
2 & 7 & 11 & 8 \\
3 & -4 & -2 & -3
\end{array}\right]_{2 \times 4}^{\downarrow} \quad=\left[\begin{array}{cccc}
-5 & 26 & 28 & 25 \\
12 & -16 & -8 & -12 \\
23 & -21 & -3 & -13 \\
-16 & -27 & -51 & -34
\end{array}\right] \\
& 3,3=\left[\begin{array}{llll}
2.2+-3.3 & 2.7+-3 .-4 & 2.11+-3 .-2 & 2.8+-3 .-3 \\
0.2+4.3 & 0.7+4 .-4 & 0.11+4 .-2 & 0.8+4 .-3 \\
1 \cdot 2+7 \cdot 3 & 1.7+7 .-4 & 1.11+7 \cdot-2 & 1.8+7 \cdot-3 \\
-5 \cdot 2+-2.3 & -5.7+-2 .-4 & -5.11+-2 .-2 & -5 \cdot 8+-2 .-3
\end{array}\right]
\end{aligned}
$$

3. Solve for the unknowns.

$$
\begin{aligned}
& \text { (a) }\left[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
x & -1
\end{array}\right]-3\left[\begin{array}{cc}
y-1 & 2 \\
1 & 2 \\
4 & -3
\end{array}\right]=2\left[\begin{array}{cc}
-4 & -2 \\
0 & z \\
4 & 4
\end{array}\right] \\
& 1-3(y-1)=-8 \\
& 4-3(2)=2 z \\
& x-3(4)=2(4) \\
& -3 y+3=-9 \\
& 4-6=2 z \\
& x-12=8 \\
& -3 y=-12 \\
& -2=2 z \\
& x=20 \\
& y=4 \\
& -1=z
\end{aligned}
$$

(b) $5\left[\begin{array}{ccc}4 & x & 7 \\ -3 & 2 & 5 \\ 6 & -4 & s\end{array}\right]-\underline{2}\left[\begin{array}{ccc}-2 & -1 & t \\ -y & -3 & -5 \\ 9 & -4 & -6\end{array}\right]=4\left[\begin{array}{ccc}6 & -2 & 7 \\ -9 & 4 & z \\ 3 & w & 2\end{array}\right]$

$$
\begin{array}{ccc}
5 x+2=-8 & -15+2 y=-36 & 25+10=4 z \\
5 x=-10 & 2 y=-21 & 35=4 z \\
x=-2 & y=\frac{-21}{2} & \frac{35}{4}=z \\
-20+8=4 \omega & 5 s+12=8 & 35-2 t=28 \\
-12=40 & 5 s=-4 & 7=2 t \\
-3=10 & S=-\frac{4}{5} & \frac{7}{2}=t
\end{array}
$$

Poppertll

$$
\begin{array}{r}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\frac{1}{D}\left[\begin{array}{cc}
a & -b \\
-c & a
\end{array}\right] \quad D=a d-b c \\
\neq 0
\end{array}
$$

$1-5$ 4. Find the inverse of the matrix, if possible.

$$
\text { (a) } A=\left[\begin{array}{ll}
6 & -9 \\
8 & -12
\end{array}\right]
$$

$$
D=6(-12)-8(-9)=0
$$

No Inverse

$$
\begin{aligned}
& \text { (b) } B=\left[\begin{array}{cc}
7 & 11 \\
-9 & -12
\end{array}\right] \\
& D=7(-12)-11(-9) \\
&=-84+99=15 \\
& \text { (c) } C=\left[\begin{array}{ccc}
-3 & 2 & 4 \\
7 & -1 & 3 \\
-2 & 3 & 7
\end{array}\right] \quad B^{-1}=\frac{1}{15}\left[\begin{array}{cc}
-12 & -11 \\
9 & 7
\end{array}\right] \\
& {\left[\begin{array}{ccc|cc}
-3 & 2 & 4 & 1 & 0 \\
7 & -1 & 3 & 0 & 1 \\
-2 & 3 & 7 & 0 & 0 \\
\hline
\end{array}\right] \xrightarrow{R_{1}}=\frac{-1}{3} R_{1} }
\end{aligned}\left[\begin{array}{ccc|ccc}
1 & -2 / 3 & -4 / 3 & -1 / 3 & 0 & 0 \\
7 & -1 & 3 & 0 & 1 & 0 \\
-2 & 3 & 7 & 0 & 0 & 1
\end{array}\right]
$$

$\left.-714 / 3 \quad 28 / 3 \quad 7 / 3 \quad 00 \quad R_{3}=2 R_{1}+R_{3}\right] R_{2}=-7 R_{1}+R_{2}$

7	-1	3	0	10
0	$11 / 3$	$37 / 3$	$7 / 3$	10

2	$-4 / 3$	$-8 / 3$	$-2 / 3$	0	0
-2	3	7	0	0	1
0	$5 / 3$	$13 / 3$	$-2 / 3$	0	1

$$
\left[\begin{array}{ccc|ccc}
1 & -2 / 3 & -4 / 3 & -1 / 3 & 0 & 0 \\
0 & 1 / 3 & 3 / 3 & 7 / 3 & 1 & 0 \\
0 & 5 / 3 & 13 / 3 & -2 / 3 & 0 & 1
\end{array}\right]
$$

$$
R_{2}=\frac{3}{11} R_{2}
$$

$$
\begin{aligned}
& R_{1}=\frac{2}{3} R_{2}+R_{1} \\
& R_{3}=-\frac{5}{3} R_{2}+R_{3}
\end{aligned}\left[\begin{array}{ccc|ccc}
1 & -2 / 3 & -4 / 3 & -1 / 3 & 0 & 0 \\
0 & 1 & 37 / 11 & 7 / 11 & 3 / 11 & 0 \\
0 & 5 / 3 & 13 / 3 & -2 / 3 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 10 / 11 & 1 / 11 & 2 / 11 & 0 \\
0 & 1 & 37 / 11 & 7 / 11 & 3 / 11 & 0 \\
0 & 0 & -14 / 11 & -19 / 11 & -5 / 11 & 1
\end{array}\right] \begin{array}{cccccc}
1 & -2 / 3 & -4 / 3 & -1 / 3 & 0 & 0 \\
0 & 2 / 3 & 74 / 33 & 14 / 33 & 2 / 11 & 0 \\
1 & 0 & 30 / 33 & 3 / 3 & 2 / 11 & 0 \\
1 & 0 & 10 / 11 & 1 / 11 & 2 / 11 & 0
\end{array}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 10 / 11 & 1 / 11 & 2 / 11 & 0 \\
0 & 1 & 37 / 11 & 7 / 11 & 3 / 11 & 0 \\
0 & 0 & -14 / 11 & -19 / 11 & -8 / 11 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lllllll}
1 & 0 & 10 / 11 & 1 / 11 & 2 / 11 & 0 \\
0 & 1 & 37 / 11 & 7 / 11 & 3 / 11 & 0 \\
0 & 0 & 1 & 19 / 14 & 5 / 14 & -11 / 14
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & & & & R_{3}=-\frac{11}{14} R_{3}
\end{array}\right.} \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & -8 / 7 & -1 / 7 & 5 / 7 \\
0 & 1 & 0 & -55 / 14 & -13 / 14 & 37 / 14 \\
0 & 0 & 1 & 19 / 14 & 5 / 14 & -11 / 14
\end{array}\right]}
\end{aligned}
$$

5. Given the linear system of equations. How would you set up using the coefficient matrix to solve the system?

$$
\begin{aligned}
& \text { (a) } 3 x-7 y=-8 \\
& 4 y-3 x=13 \\
& 3 x-7 y=-8 \\
& -3 x+4 y=13 \\
& A \quad X \quad B \\
& {\left[\begin{array}{cc}
3 & -7 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-8 \\
13
\end{array}\right]} \\
& D=3.4-(-3)(-7) \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
3 & -7 \\
-3 & 4
\end{array}\right]^{-1}\left[\begin{array}{c}
-8 \\
13
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
7 & 2 & -2 \\
-5 & 2 & -1 \\
4 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
11 \\
-13 \\
-7
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
7 & 2 & -2 \\
-5 & 2 & -4 \\
4 & -3 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
11 \\
-13 \\
-7
\end{array}\right]} \\
& X=\left[\begin{array}{ccc}
\frac{4}{41} & \frac{-1}{41} & \frac{2}{41} \\
\frac{3}{41} & \frac{-11}{41} & \frac{-19}{41} \\
\frac{-7}{82} & \frac{-29}{82} & \frac{-12}{4}
\end{array}\right]\left[\begin{array}{c}
1 \\
-13 \\
-7
\end{array}\right]
\end{aligned}
$$

Try to find the inverse on your owe

