1. Anna wants to have $\$ 5,000$ saved when she graduates from college so that she will have a down payment for a new car. Her credit union pays 5% annual interest compounded monthly. How much money should she deposit each month to have the money available when she graduates in 3 years?

$$
\text { sinking Fund } i=\frac{0.05}{12} \quad F=5000
$$

$$
E=\frac{i F}{(1+i)^{n}-1}=\frac{\frac{0.05}{12} \cdot 5000}{\left(1+\frac{0.05}{12}\right)^{36}-1}=\$ 129.02
$$

2. Bill bought a new car. His financing deal was a 5 year loan at 9.98% annual interest compounded monthly. His monthly payment was $\$ 421.25$ and he paid no money down. What was the total purchase price of the car?

$$
\begin{array}{ll}
& \text { P. VA } \quad P=E\left[\frac{1-(1+i)^{-n}}{i}\right] \\
E=421.25 \quad & =421.25\left[\frac{1-\left(1+\frac{0.0998}{12}\right)^{-60}}{(0.0998}\right) \\
i=\frac{0.0998}{12}
\end{array}
$$

3. Sergio wants to have $\$ 5,000$ in the bank in 3 years to pay for an Alaskan cruise. How much cash should he deposit today, if the bank pays 4% annual interest compounded quarterly, if he wants to be sure to have the funds available in 3 years?

$$
\begin{aligned}
& \text { PV with CI } \quad P=F(1+i)^{-n} \\
& \\
& \\
& i=\frac{0.04}{4} \quad n=3(4)=12
\end{aligned}
$$

4. Edwin and Frances are buying a new home. The purchase price is $\$ 155,000$. They will make a 10% down payment on the house. Their loan for the house is a 30 year conventional loan at 6.75% per year compounded monthly. Find their monthly payment.
Amortization

$$
\begin{aligned}
P & =155000(0.9)_{1} \\
& =139500
\end{aligned}
$$

$$
\begin{aligned}
& E=\frac{i P}{1-(1+i)^{-n}} \\
& i=\frac{0.0675}{12} \\
& n=30(12)=360
\end{aligned}
$$

$\frac{\text { Popper 12 }}{1-5} \rightarrow C$
5. Grace decides to start a savings program when she gets her first job after graduatron. She deposits $\$ 2,500$ into her credit union savings account. The credit union pays 3.8% annual interest compounded quarterly. How much money will she have in the account after 4 years?

$$
F V_{\wedge} C I
$$

$$
\begin{gathered}
F=P(1+i)^{n} \\
i=\frac{0.038}{4} n=4(4)=16 \\
=2500\left(1+\frac{0.038}{4}\right)^{16}=42908.31
\end{gathered}
$$

6. Helen bought a new computer. The finance company charged her 15% per year compounded monthly. Her monthly payments were $\$ 88.23$ for 2 years and she made no down payment. What was the original price of the computer?

$$
B=E\left[\frac{1-(1+i)^{-u}}{i}\right] \begin{aligned}
& P=\frac{0.15}{12} \\
& n=24=\$ 1819.68
\end{aligned}
$$

7. Gary decided to save some money for his daughter's college education. He decided to save $\$ 300$ per quarter. His credit union pays 4.5% per year compounded quarterly. How much money will he have available when his daughter starts college in 10 years?
F.VA

$$
\begin{aligned}
F & =E\left[\frac{(1+i)^{n}-1}{i}\right]^{40}-1 \\
& =300\left[\frac{\left(1+\frac{0.045}{4}\right)^{n}-1}{\left(\frac{0.045}{4}\right)}\right] \\
& =15050.05
\end{aligned}
$$

8. Jolene owns a clothing store. She anticipates that she will need to replace her telephone system in 3 years. She projects that a new system will cost $\$ 12,500$. Her bank pays 5% annual interest compounded semiannually. How much should she deposit semiannually in order to be able to pay cash for the new phone system?

$$
E=\frac{i F}{(1+1)^{n}-1}=\frac{\left(\frac{(0.05}{2}\right)(12,500)}{\left(1+\frac{0.0}{2}\right)^{6}-1}=1956.87
$$

9. Kris wins the lottery and decides to deposit $\$ 25,000$ of his winnings in an account for his nephew. The bank pays 6.2% annual interest compounded monthly. How much will he be able to give his nephew in 5 years?
FV with CI

$$
\begin{aligned}
F & =P(1+i)^{n} \\
& =25000\left(1+\frac{0.062}{12}\right)^{60} \\
& =\$ 34058.44
\end{aligned}
$$

10. Megan bought a new car. Her car payments are $\$ 385.17$ for 6 years. Her financing rate was 8.9% annual interest compounded monthly. She made a $\$ 1,200$ down payment. What was the total purchase price of the car?

$$
\begin{aligned}
P & =E\left[\frac{1-(1+i)^{-51}}{i}\right]^{i}-\left(1+\frac{0.89}{12}\right)^{72} \\
& =385.17\left[\frac{1200}{\left(\frac{0.089}{12}\right)}\right. \\
& =\$ 22626.97
\end{aligned}
$$

11. A company has an immediate need for a loan. In an agreement worked out with its banker, the company assigns its royalty income of $\$ 4,800$ per month for the next 3 years from certain oil properties to the bank, with the first payment due at the end of the first month. If the bank charges interest at the rate of 9% per year compounded monthly, what is the amount of the loan negotiated between the parties?
OvA

$$
\begin{aligned}
i & =\frac{0.09}{12} \\
n & =3(12) \\
& =36
\end{aligned}
$$

$$
\begin{aligned}
& P=E\left[\frac{1-(1+i)^{-4}}{i}\right]^{\left[\frac{1-(1+99}{12}\right)^{-36}} \\
& =4800\left[\frac{1.02}{12}\right)
\end{aligned}
$$

12. Carol's employer deposits $\$ 1,000$ per quarter into a retirement plan that earns 3.5% annual interest compounded quarterly. How much will be in the plan when she retires in 32 years?

$$
\begin{aligned}
& F V A \\
& i=\frac{0.035}{42} \\
& n=32(4) \\
& =128
\end{aligned}
$$

$$
\begin{aligned}
F & =E\left[\frac{(1+i)^{n}-1}{i}\right] \\
& =1000\left[\frac{\left(1+\frac{0.035}{4}\right)^{128}-1}{\left(\frac{0.035}{4}\right)}\right] \\
& =\$ 234281.12
\end{aligned}
$$

13. Kelly wishes to buy a car that costs $\$ 32,998$. The car dealer tells her that they can finance the car at 6.25% per year compounded monthly for 5 years. She decides to secure the loan from the dealer. How much will her monthly payments be? Amortization

$$
\begin{aligned}
i & =\frac{0.0625}{12} \\
n & =5(12) \\
& =60
\end{aligned}
$$

$$
\begin{aligned}
E & =\frac{i P}{1-(1+i)^{-r}} \\
& =\frac{(0.0625532998}{12}-\left(1+\frac{0.0625}{12}\right)^{60}
\end{aligned}=\$ 641.79
$$

14. David owns a small business and knows that he will need to purchase two new delivery vans in 5 years. He anticipates that the vans will cost the business $\$ 28,500$ each. His bank pays 4.2% per year compounded monthly. How much should he deposit each month so that he will have the funds available to buy the vans in 5 years?

SF.

$$
\begin{aligned}
& i=\frac{0.042}{12} \\
& n=60
\end{aligned}
$$

$$
\begin{aligned}
E & =\frac{i F}{(1+i)^{n}-1} \quad & \text { For vans } \\
& =\frac{\left(\frac{0.042}{12}\right) 28500}{\left(1+\frac{0.042}{12}\right)^{60}-1} & =2 \times 427.697 \\
& =\$ 42 \frac{12}{6967} \quad & =\$ 855.39
\end{aligned}
$$

17. Parents agree to invest $\$ 500$ at 10% per year compounded semiannually for their son on the December 31 or June 30 following each semester that he makes the Dean's list during his 4 years in college. If he makes the Dean's list in each of the 8 semesters, how much money will his parents have to give him when he graduates in 4 years?
$F \vee A$

$$
\begin{aligned}
F & =E\left[\frac{(1+i)^{n}-1}{i}\right] \\
& =500\left[\frac{\left(1+\frac{0.1}{2}\right)^{8}-1}{\left(\frac{0.1}{2}\right)}\right] \\
& =\$ 4774.55
\end{aligned}
$$

18. A health club offers to let you join for $\$ 50$ down and payments of only $\$ 36$ per month for 3 years. When you read the fine print, you discover that the interest rate is 18% per year compounded monthly. What is the cash price of the health club membership? How much will the club membership cost you after 3 years?
Pf A

$$
\begin{aligned}
P & =E\left[\frac{1-(1+i)^{-n}}{i}\right]+50 \xrightarrow{\rightarrow}=\$(346 \\
& =36\left[\frac{1-\left(1+\frac{0.18}{12}\right)^{-36}}{\left(\frac{0.18}{12}\right)}\right]+50 \\
& =\$ 10 \wedge 5,78
\end{aligned}
$$

19. Nicholas and Olivia are buying a house for $\$ 250,000$. They made a 15% down payment. Their financing is for 30 years at 6.78% annual interest compounded monthly. Find their monthly payment.

$$
\begin{aligned}
& \text { Amortization } \\
& P=250000(0.85) \\
& =212500 \\
& n=30(12)=360
\end{aligned}
$$

$$
\begin{aligned}
E & =\frac{i p}{1-(1+i)^{-n}} \\
& =\frac{\left(\frac{0.0677^{6}}{12}\right)(212500)}{1-\left(1+\frac{0.0678}{12}\right)^{-360}}
\end{aligned}
$$

20. A lending company recently offered 36 -month auto loans at 4.56% per year compounded monthly to applicants with good credit ratings. If you have a good credit rating and can afford monthly payments of $\$ 350$, how much can you borrow from

$$
\text { P. vA } \begin{aligned}
P & =E\left[\frac{1-(1+i)^{-n}}{i}\right] \\
& =350\left[\frac{1-\left(1+\frac{0.0756}{12}\right)^{-36}}{5\left(\frac{0.0756}{12}\right)}\right] \\
& =\$ 11.241 .81
\end{aligned}
$$

Solutions:

1. Sinking Fund; $\$ 129.02$
2. Present Value of an Annuity; $\$ 19,835.47$
3. Present Value with compound interest; $\$ 4,437.25$
4. Amortization; $\$ 904.79$
5. Future Value with compound interest; $\$ 2,908.31$
6. Present Value of an Annuity; 208170 \& 1819.68
7. Future Value of an Annuity; $\$ 15,050.05$
8. Sinking Fund; $\$ 1,956.87$
9. Future Value with compound interest; $\$ 34,058.44$
10. Present Value of an Annuity; $\$ 22,626.97$
11. Present Value of an Annuity; $\$ 150,944.67$
12. Future Value of an Annuity; $\$ 234,281.12$
13. Amortization; $\$ 641.79$
14. Sinking Fund; $\$ 855.39$
15. Future Value with compound interest; $\$ 180,549.51$
16. Present Value with compound interest; $\$ 5,446.88$
17. Future Value of an Annuity; 421.01474
18. Present Value of an Annuity; $\$ 1,045.78 ; \$ 1,346.00$
19. Amortization; $\$ 1,382.51$
20. Present Value of an Annuity; $\$ 11,241.81$
