Informal Geometry and Measurement

Undefined Terms (set, point, line, plane)

- A \qquad which is represented as a dot, has location but not size.
- A \qquad is an infinite set of points. Given any 3 distinct points on the same line, they are said to be collinear.
- A \qquad is part of a line. It consists of two distinct points and all points between them.

Notation: $\angle A B C \quad$ (angle $A B C$), $\triangle A B C$ (triangle $A B C$) and $\square \mathrm{ABCD}$ (rectangle $A B C D$).

A point is represented by a dot and has a unique location. We use upper case letters to name points.

Example 1:

B
A

C

D.

A line is an infinite set of points. (Symbol:)

Example 2:

Points that lie on the same line are called \qquad (Symbol: $A-X-B$) Points that do not lie on the same line are called \qquad .

Example3: Consider noncollinear points A, B, and C. If each line must contain both points, what is the total number of lines that are determined by these points?

B•
A•
C•

A line segment is part of a line. (Symbol, $\overline{A B}$ where A and B are the \qquad

Example 4: Given the following line segments: A
B C

If $\overline{\mathrm{AC}}=22$ and $\overline{\mathrm{BC}}=14$ what does $\overline{\mathrm{AB}}=$?

Example 5:

How many lines can be drawn through

1. point A ?
2. both points A and B ?
3. all points A, and B, and C ?
4. Where do $\overleftrightarrow{A B}$ and $\overleftrightarrow{A C}$ intersect?

Definition: An \qquad is union of two rays that share a common endpoint.

FACTS:

- The measure of an angle is a unique positive number.
- An angle whose measures less than 90° is an \qquad .
- An angle whose measures exactly 90° is a \qquad .
- An angle whose measures exactly 180° is a \qquad .
- If an angle measures between 90° and 180° it is an \qquad .
- A \qquad is one whose measure is between 180° and 360°.

Definition: (in your words define each)
(1) Perpendicular lines
(2) Parallel lines

Example 6: Use the following figure to answer each question.

Find the following:
a. Straight angle
b. Right angle
c. Acute angle
d. Obtuse angle

If a point D lies in the interior of the angle ABC , then $\mathrm{m} \angle \mathrm{ABD}+\mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ABC}$.

Example 7: Given:

a. If $\mathrm{m} \angle \mathrm{MNP}=76^{\circ}$ and $\mathrm{m} \angle \mathrm{MNR}=47^{\circ}$ find $\mathrm{m} \angle \mathrm{PNR}$.
b. If $\mathrm{m} \angle \mathrm{MNP}=76^{\circ}$ and $\overrightarrow{\mathrm{NR}}$ bisects $\angle \mathrm{MNP}$, find $\mathrm{m} \angle \mathrm{PNR}$.
c. Find x, if $m \angle P N R=2 x+9$ and $m \angle R N M=3 x-2$ and $m \angle P N M=67^{\circ}$.

Definition: Congruent angles ($\cong, \angle \mathrm{s}$) are two angles with the same \qquad .

Definition: The \qquad of an angle is the ray that separates the given angle into two congruent angles.

Definition: Two angles are \qquad angles if the sum of their measures is 90°. Each angle in the pair is known as the complement of the other angle.

Definition: Two angles are \qquad angles if the sum of their measures is 180°. Each angle in the pair is known as the supplement of the other angle.

Example 8: If the measure $\mathrm{m} \angle \mathrm{A}=(2 \mathrm{x})^{\circ}$, and the $\mathrm{m} \angle \mathrm{B}=(\mathrm{x}-6)^{\circ}$, and $\mathrm{m} \angle \mathrm{A}$ and $\mathrm{m} \angle \mathrm{B}$ are complementary, find x and the measure of each angle.

Example 9: If the measure $\mathrm{m} \angle \mathrm{A}=(2 \mathrm{y}-9)^{\circ}$, and the $\mathrm{m} \angle \mathrm{B}=(7 \mathrm{y})^{\circ}$, and $\mathrm{m} \angle \mathrm{A}$ and $\mathrm{m} \angle \mathrm{B}$ are supplementary, find x and the measure of each angle.

