Informal Geometry and Measurement

Undefined Terms (set, point, line, plane)
• A, which is represented as a dot, has location but not size.
• A is an infinite set of points. Given any 3 distinct points on the same line,
they are said to be collinear .
A is part of a line. It consists of two distinct points and all points
between them.
Notation: \angle <i>ABC</i> (angle ABC), \triangle <i>ABC</i> (triangle ABC) and \square ABCD (rectangle ABCD).
Rays are named: A B or A B
A point is represented by a dot and has a unique location. We use upper case letters to name points.
Example 1:
B. A.
Ç
D _•
A line is an infinite set of points. (Symbol:

Example 2:

Points that lie on the same line are called ______ (Symbol: A - X - B) Points that do not lie on the same line are called ______.

Example3: Consider noncollinear points A, B, and C. If each line must contain both points, what is the total number of lines that are determined by these points?

В●

A •

C•

A **line segment** is part of a line. (Symbol, \overline{AB} where A and B are the _____)

Example 4: Given the following line segments: A B C

If $\overline{AC} = 22$ and $\overline{BC} = 14$ what does $\overline{AB} = ?$

Example 5: How many lines can be drawn through
1. point <i>A</i> ?
2. both points A and B?
3. all points A, and B, and C?
4. Where do \overrightarrow{AB} and \overrightarrow{AC} intersect?
Definition: An is union of two rays that share a common endpoint.
FACTS:
The measure of an angle is a unique positive number.
$ullet$ An angle whose measures less than 90° is an
• An angle whose measures exactly 90° is a
$ullet$ An angle whose measures exactly 180° is a
• If an angle measures between 90° and 180° it is an
$ullet$ A is one whose measure is between 180° and 360° .
Definition: (in your words define each)

(1) Perpendicular lines

(2) Parallel lines

Example 6: Use the following figure to answer each question.

Find the following:

- a. Straight angle
- b. Right angle
- c. Acute angle
- d. Obtuse angle

If a point D lies in the interior of the angle ABC, then $m \angle ABD + m \angle DBC = m \angle ABC$.

Example 7: Given:

a. If m \angle MNP = 76° and m \angle MNR = 47° find m \angle PNR.

b. If m \angle MNP = 76° and \overrightarrow{NR} bisects \angle MNP, find m \angle PNR.

c. Find x, if m \angle PNR = 2x + 9 and m \angle RNM = 3x -2 and m \angle PNM = 67°.

Definition: Congruent angles (\cong	, \angle s) are two angles with the same
Definition: The congruent angles.	of an angle is the ray that separates the given angle into two
	angles if the sum of their measures is 90° . Each known as the complement of the other angle.
	angles if the sum of their measures is the pair is known as the supplement of the other angle.
Example 8: If the measure m $\angle A$	$A = (2x)^{\circ}$, and the m $\angle B = (x - 6)^{\circ}$, and m $\angle A$ and m $\angle B$ are

Example 8: If the measure m $\angle A = (2x)^{\circ}$, and the m $\angle B = (x - 6)^{\circ}$, and m $\angle A$ and m $\angle B$ are complementary, find x and the measure of each angle.

Example 9: If the measure m $\angle A = (2y-9)^\circ$, and the m $\angle B = (7y)^\circ$, and m $\angle A$ and m $\angle B$ are supplementary, find x and the measure of each angle.

Now Try from your Textbook starting on page 17 #'s: 11, 12,13,14,15, 32