Early Definitions and Postulates (1.3) Four Parts of a Mathematical System 1. Undefined terms 2. Defined terms 3. Axioms or postulates 4. Theorems

Definition: An ______ triangle is a triangle that has two congruent sides.

Characteristics of a good definition:

- 1. It names the term being defined.
- 2. It places the term into a set or category.
- 3. It distinguishes the defined term from other terms without providing unnecessary facts.
- 4. It is reversible.

Definition: A ______ is the part of the line that consists of two points, known as endpoints and all points between them.

Postulate 1: Through two distinct points, there is exactly one ______.

Postulate 2: The measurement of any line segment is a unique number. (______Postulate)

Definition: The distance between two points A and B is the ______ of the line segment AB that joins the points.

Postulate 3: If X is a point on \overrightarrow{AB} and $\overrightarrow{A} - \overrightarrow{X} - \overrightarrow{B}$ then $\overrightarrow{AX} + \overrightarrow{XB} = \overrightarrow{AB}$

Definition: Congruent (\cong) line segmen	nts are two lines that have the same
Definition: The into two congruent parts.	of a line segment is the point that separates the line segment

Example 1: Given M is the midpoint of \overline{AB} , AM =3(x+ 3) and MB = 4(x - 2). Find the length of \overline{AB} and the value for x.

Definition: Ray AB denoted by \overrightarrow{AB} , is the union of \overrightarrow{AB} and all points X on \overrightarrow{AB} such that B is between A and X.

Postulate 4: If two lines intersect, they intersect at a ______.

Definition: Parallel lines are lines that lie in the same plane but do ______ intersect.

Postulate 5: Through three noncollinear points, there is exactly one ______.

Postulate 6: If two distinct planes intersect, then their intersection is a ______.

Postulate 7: Given two distinct points in a plane, the line containing these points also lies in that plane.

Theorem 1.3.1: The midpoint of a line is ______.

Angles and Their Relationships (1.4)

Postulate 8: The measurement of an angle is a unique positive number.

Postulate 9: If a point D lies in the interior of an angle ABC, then $\angle ABD + \angle DBC = \angle ABC$

Definition: Two angles are ______ (adj. $\angle s$) if they have a common vertex and a common side between them. (Check-out the last example). **Definition:** ______ angles ($\cong \angle s$) are two angles of the same measure. **Definition:** The ______ of an angle is the ray that separates the given angle into two congruent angles.

Example 3: Given: BD bisects $\angle ABC$ $m \angle ABD = x + y$ $m \angle DBC = 2x - 2y$ $m \angle ABC = 64^{\circ}$ find x and y

Definition: ______ **Angles -** is where to straight lines intersect, the pairs of nonadjacent angles formed are vertical angles. Vertical angles are congruent. The two adjacent angles are supplementary.

Example 4: Use the figure from above.

a. If $m \angle 4 = 97^\circ$, find the measures of the other 3 angles.

b. If $m \angle 1 = x + 7$ and the $m \angle 2 = 2x - 23$, find x and the measures of four angles.

Example 5: Use the figure to answer each questions.

Find the measure of all the angles 1 -7.

Hint: $m \angle 3 + m \angle 5 + m \angle 6 = 180^{\circ}$

TRY THESE: textbook page 27, #'s 14, 16, 26 and textbook page 35 #'s 10, 18, 23, 26