Introduction to Geometric Proof

Properties of Equality		
Addition Property of Equality	If a = b, then a + c = b + c	
Subtraction Property of Equality	If a = b, then a - c = b - c	
Multiplication Property of Equality	If a = b, then a • c = b • c	
Division Property of Equality	If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$	

Example 1:

a. If 3x = 9, then x = 3 uses the multiplication or division property

b. If x + 2 = 10, then x = 8 uses the subtraction property

c. If $\frac{2}{3}x = 8$, then x = 12 uses the multiplicand property

Further properties of Algebra

Distributive Property $a(b + c) = a \bullet b + a \bullet c$ Substitution PropertyIf a = b, then a replaces b in any equation.Transitive PropertyIf a = b and b = c, then a = c.Symmetric PropertyIf a = b, then b = a.Reflexive PropertyIf a = a

Example 2: Given: 3x + 2 = 4 + 5x Prove: x = -1

Statements	Reasons
1. $3x + 2 = 4 + 5x$	1.
2. $3x + 2 - 4 = 4 - 4 + 5x$	2.
3. $3x - 2 = 5x$	3.
4. $3x - 3x - 2 = 5x - 3x$	4.
5 2 = 2x	5.
6. $\frac{1}{2}(-2) = \left(\frac{1}{2}\right)2x$	6.
7. $-1 = x$ 8. $x = -1$	7. 8.

$$A \qquad B \qquad C \qquad D$$

Example 3: Given the drawing

Suppose that AB = 9, BC = 2 and CD = 9 is AC = BD and why?

Example 4:

Given: B is the midpoint of the line \overrightarrow{AC} Prove: $AB = \frac{AC}{2}$ Statements Reasons

1. B is the midpoint of \overline{AC}	1.	
2. $AB = BC$	2.	
3. $AB + BC = AC$	3.	
4. $AB + AB = AC$	4.	
5. $2(AB) = AC$	5.	
6. AB = $\frac{AC}{2}$	6.	

Be sure to study the examples in the book for this section.

Example 5: Answer the following questions.

- a. If the $m \angle 1 + m \angle 2 = 90^{\circ}$ and $m \angle 3 = m \angle 1$ what is true?
- b. K is in the interior of $\angle GHJ$ so what can we conclude about $m \angle GHK + m \angle KHJ =$
- c. Suppose that $m \angle ABC = 128^{\circ}$. If \overline{BD} bisects $\angle ABC$, determine the $m \angle ABD$