## Introduction to Geometric Proof

## Properties of Equality

Addition Property of Equality
If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{c}$
Subtraction Property of Equality
If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{c}$
Multiplication Property of Equality
If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a} \bullet \mathrm{c}=\mathrm{b} \bullet \mathrm{c}$
Division Property of Equality
If $\mathrm{a}=\mathrm{b}$ and $c \neq 0$, then $\frac{a}{c}=\frac{b}{c}$

## Example 1:

a. If $3 x=9$, then $x=3 \quad$ uses the multiplication or division property
b. If $x+2=10$, then $x=8 \quad$ uses the subtraction property
c. If $\frac{2}{3} x=8$, then $x=12 \quad$ uses the multiplicand property

## Further properties of Algebra

Distributive Property
$a(b+c)=a \bullet b+a \bullet c$
Substitution Property
If $a=b$, then a replaces $b$ in any equation.
Transitive Property
If $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=\mathrm{c}$, then $\mathrm{a}=\mathrm{c}$.
Symmetric Property
If $a=b$, then $b=a$.
Reflexive Property If $a=a$

Example 2: Given: $3 \mathrm{x}+2=4+5 \mathrm{x} \quad$ Prove: $\mathrm{x}=-1$

| Statements | Reasons |
| :--- | :--- |
| 1. $3 \mathrm{x}+2=4+5 \mathrm{x}$ | 1. |
| 2. $3 \mathrm{x}+2-4=4-4+5 \mathrm{x}$ | 2. |
| 3. $3 \mathrm{x}-2=5 \mathrm{x}$ | 3. |
| 4. $3 \mathrm{x}-3 \mathrm{x}-2=5 \mathrm{x}-3 \mathrm{x}$ | 4. |
| 5. $-2=2 \mathrm{x}$ | 5. |
| 6. $\frac{1}{2}(-2)=\left(\frac{1}{2}\right) 2 x$ | 6. |
| 7. $-1=x$ | 7. |
| 8. $x=-1$ |  |

Example 3: Given the drawing


Suppose that $\mathrm{AB}=9, \mathrm{BC}=2$ and $\mathrm{CD}=9$ is $\mathrm{AC}=\mathrm{BD}$ and why?

## Example 4:

Given: B is the midpoint of the line $\overleftrightarrow{\mathbf{A C}}$


Prove: $\mathrm{AB}=\frac{\mathbf{A C}}{2}$

| Statements | Reasons |
| :--- | :--- |
| 1. B is the midpoint of $\overline{A C}$ | 1. |
| 2. $\mathrm{AB}=\mathrm{BC}$ | 2. |
| 3. $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$ | 3. |
| 4. $\mathrm{AB}+\mathrm{AB}=\mathrm{AC}$ | 4. |
| 5. $2(\mathrm{AB})=\mathrm{AC}$ | 5. |
| 6. $\mathrm{AB}=\frac{A C}{2}$ | 6. |

Be sure to study the examples in the book for this section.
Example 5: Answer the following questions.
a. If the $m \angle 1+m \angle 2=90^{\circ}$ and $m \angle 3=m \angle 1$ what is true?
b. K is in the interior of $\angle G H J$ so what can we conclude about $m \angle G H K+m \angle K H J=$
c. Suppose that $m \angle A B C=128^{\circ}$. If $\overline{B D}$ bisects $\angle A B C$, determine the $m \angle A B D$

NOW TRY FROM TEXBOOK: p. 42 \#'s 23, 27, 29

