Relationships: Perpendicular Lines

Definitions:

A **plane** is a two dimensional geometric object. It has infinite length and infinite width but no thickness.

Parallel lines are lines that lie in the same plane but do not intersect. (Symbol ||)

Perpendicular lines are two lines that meet to form congruent adjacent angles. (Symbol \perp)

Theorem1.6.1: If two lines are perpendicular, then they meet to form ______.

Given: $\overrightarrow{AB} \perp \overrightarrow{CD}$ intersecting at E.

Prove: ∠AEC is a right angle

Statements	Reasons
1. $\overrightarrow{AB} \perp \overrightarrow{CD}$ intersecting at E.	1.
2. ∠AEC ≅ ∠CEB	2.
3. m∠AEC ≅ m∠CEB	3.
4. ∠AEB is a straight angle	4.
5. m∠AEC + m∠CEB = ∠AEB	5.
6. m∠AEC + m∠CEB = 180°	6.
7. $m\angle AEC + m\angle AEC = 180^{\circ}$ or	
$2(\text{m}\angle\text{AEC}) = 180^{\circ}$	7.
8. m∠AEC = 90°	8.
9. ∠AEC is a right angle	9.

Table 1.8

Relation Object Related Example

Is equal to numbers 2+3=5

Is greater than numbers 7 > 5

Is perpendicular to lines $n \perp m$

Is complementary to angles $\angle 1$ is comp to $\angle 2$

Is congruent to line segments $\overline{AB} \equiv \overline{CD}$

Is a brother people Mike is brother of Tom

Properties:

Reflexive property: aRa (5 = 5, equality of numbers has a reflexive property).

Symmetric property: If aRb, then bRa. (If $n \perp m$, then $m \perp n$, perpendicular lines have the symmetric property).

Transitive property: If aRb and bRc, then aRc, (If $m \angle 1 \equiv m \angle 2$ and $m \angle 2 \equiv m \angle 3$, then $m \angle 1 \equiv m \angle 3$, congruence of angle is transitive).

Example 2: Given the line segment

- A B C D
- a. An example of reflexive property:
- b. An example of the transitive property:
- c. An example of the symmetric property:

Example 3: Given: $\angle ABC$ and $\angle CBD$ are complementary, $\angle CBD$ and $\angle DBE$ are complements.

Use transitive property to show that $\angle ABC \cong \angle DBE$

NOW TRY: p. 48 #'1 1, 4, 11