1

Proving Parallel Lines 2.3

State Theorems 2.1.2 through 2.1.4 and Postulate 11 :

All of the above theorems start with start with the hypothesis "If two parallel lines are cut by a transversal"

Postulate11:

Theorem 2.1.2

Theorem 2.1.3

Theorem 2.1.4

Theorem 2.1.5

Theorem 2.3.2: If two lines are cut by a transversal so that interior angles are congruent, then these lines are parallel.

Theorem 2.3.3: If two lines are cut by a transversal so that alternate exterior angles are congruent

Example 1: Name the lines (if any) that must be parallel under the given conditions.

a. $\angle 1 \cong \angle 3$

b. $\angle 4 \cong \angle 15$

c, $\angle 10 \cong \angle 13$

d. $a \perp m$ and $b \perp m$

Example 2: Determine the values of x or the angle so that the line *l* will be parallel to *m*.

- a. If $m \angle 1 = 107^\circ$, find $m \angle 5$
- b. If $m \angle 4 = 106^\circ$, find $m \angle 6$
- c. If $m \angle 2 = 72^\circ$, find $m \angle 7 = 4x + 20$
- d. If $m \angle 3 = 2x + 26$, $m \angle 5 = 6(x 1)$

Example 3: Find the value of x and the measure of each angle that will make $p \parallel q$

Example 4: a. If $\angle 1 \cong \angle 2$ which lines must be parallel?

b. If $\angle RAB \cong \angle CBM$, which lines must be parallel?

OK, TRY: p. 87 #s 19 and 21