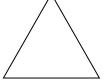

## The Angles of a Triangle

**Definition:** A triangle is the union of three line segments that are determined by three non-collinear points.

Parts of a triangle:




Types of triangles: [fill in the blanks]

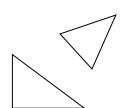
**Classified by Congruent sides** 

| No congruent  | sides |
|---------------|-------|
| 140 Congruent | Siuci |



\_\_\_\_\_ Two congruent sides




\_\_\_\_\_ Three congruent sides



**Classify by Angles:** 

all angles are acute

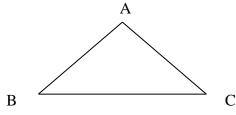
\_\_\_\_\_ one right angle



\_\_\_\_\_ one obtuse angle



\_\_\_\_\_ all angles are congruent




**Theorem 2.4.1**: In a triangle, the sum measure of the interior angles is 180°.

Given:  $\triangle ABC$ 

Prove:  $m\angle A + m\angle B + m\angle C = 180^{\circ}$ 

Picture Proof:

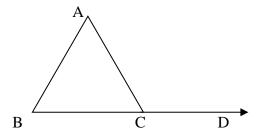


**Example 1:**  $\triangle ABC$ , has  $m \angle A = m \angle C = 76^{\circ}$ , find  $m \angle B$ . What kind of triangle is  $\triangle ABC$ ?

**Corollary 2.4.2:** Each angle of an equiangular triangle measures 60°.

**Corollary 2.4.3:** The acute angles of a right triangle are complementary.

**Example 2:** Classify the triangle form the given information. We will use  $\triangle ABC$ .

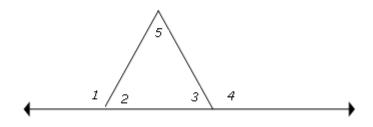

3

- a.  $m \angle B = 115^{\circ}$
- b.  $m\angle A = m\angle B = m\angle C$
- c.  $m\angle A = 45^{\circ}$ ,  $m\angle B = 65^{\circ}$ ,  $m\angle C = 70^{\circ}$
- d.  $\angle A$  and  $\angle C$  are complementary.

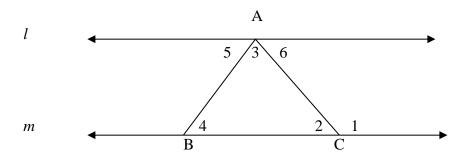
**Corollary 2.4.4:** If two angles of one triangle are congruent to two angles of another triangle then the third angles are also congruent.

Look over example 4, p. 91. It is a good example and we will use this corollary will be used in chapter 3.

**Corollary 2.4.5**: The measure of an exterior angle of a triangle equals the sum of the two measures of the two non adjacent interior angles.

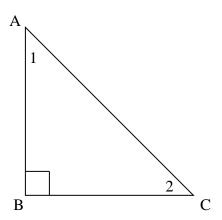



**Example 3:** Given:  $m \angle 1 = 8(x + 2)$ 


$$m \angle 3 = 5x - 3$$

$$m \angle 5 = 5(x + 1) - 2$$

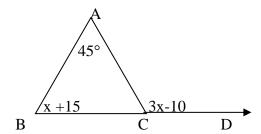
Find *x* and measures of angles 1, 2, 3, 4 and 5.




## **Example 4:** Given $\triangle ABC$ and $l \parallel m$ .



Given:  $m \angle 3 = 51^{\circ}$ , and  $m \angle 2 = 76^{\circ}$ , find  $m \angle 1$ ,  $m \angle 4$ ,  $m \angle 5$ , and  $m \angle 6$ ,


**Example 5:** In the figure provided, find the following:



a. Find  $m \angle 1 + m \angle 2$ 

b. Find x if the  $m \angle 1 = 4x + 7$  and  $m \angle 2 = 2x + 3$ 

**Example 6;** Given  $\triangle ABC$ 



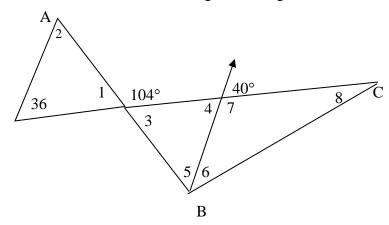
Solve for x and give the measure of  $\angle ABC$  and  $\angle ACD$ .

**Example 7:** If AB is perpendicular to BC, find the measure of each angle in the figure below.

m∠1 =

 $m\angle 2 =$ 

 $m \angle 3 =$ 


 $m \angle 4 =$ 

 $m \angle 5 =$ 

 $m\angle 6 =$ 

 $m \angle 7 =$ 

 $m\angle 8 =$ 



MORE?!?!? Try these: p. 93 #'s 16, 19, 28