Class Notes Section 3.3 Analyzing Isosceles Triangles

In an **isosceles triangle**, the two sides that are of equal length are called the **legs** and the third side is called the **base**. The point at which the legs meet is the **vertex** and the angle there is the **vertex angle**. The two angles that include the base are called the **base angles**.

Name the parts of this isosceles triangle:

Other important triangle parts:

Definitions:

median	 a segment that starts from an angle and goes to the midpoint of the opposite side.
altitude	 a segment that starts from an angle and is perpendicular to the opposite side.
angle bisector	 of a triangleis a segment that bisects an angle and goes to the opposite side.
perpendicular bisector - a segment that passes through the midpoint of a side AND is perpendicular to that side.	

Examples:

<u>Thm</u> – Corresponding altitudes of congruent triangles are congruent.

<u>Thm</u> - The bisector of the vertex angle of an isosceles triangle separates the triangle into two congruent triangles.

В Proof -Given : Isosceles $\triangle ABC$, with $\overline{AB} \simeq \overline{BC}$ BD bisects ∠ ABC $\triangle ABD \simeq \triangle CBD$ Prove: А

С D

Isosceles Triangle Theorem - if two sides of a triangle are congruent, then the angles opposite those sides are congruent.

AND (converse) if two angles of a triangle are congruent, then the sides opposite those angles are congruent.

 $\triangle DEF$ is isosceles. $\angle D$ is the vertex angle. The m $\angle E = 2x + 40$ and the m $\angle F = 3x + 22$. Find the measures of each angle.

<u>so.....</u>

- a triangle is equilateral **if and only if** it is equiangular.
- each angle of an equilateral triangle measures 60°.

Defn – The perimeter of a triangle is the sum of the lengths of all of its sides.

Study the chart on page 145.

Example 3:

a. In the figure below, $\overline{PQ} \simeq \overline{PR}$, and \overline{PS} and \overline{ST} are medians. Find QT and QR.

b. \overline{KL} is an altitude of Δ HJK. Find "x".

c. \overline{PO} is the perpendicular bisector of \overline{MN} . Find "x".

d. In ΔJKL , $\overline{JK} \simeq \overline{JL}$, and \overline{JM} is both a median, and altitude, and an angle bisector. Find the following.

Example 4:

d. Use the figure below to find the angle measures if $m \angle 1 = 30$.

