Inequalities in a Triangle

Definition: Let a and b be real numbers $\mathrm{a}>\mathrm{b}$ if and only if there is a positive number p for which $\mathrm{a}=\mathrm{b}+\mathrm{p}$

Example 1: $7>2$ and 5 is a positive number so $7=2+5.7>2$ and $7>5$
Lemma 3.5.1: If B is between A and C on $\overline{A C}$, then $A C>A B$ and $A C>B C$. (The measure of a line segment is greater than the measure of any its parts.)

Example 1: According to the segment addition property $\mathrm{AC}=\mathrm{AB}+\mathrm{BC}$

Lemma 3.5.2: If $\overrightarrow{B D}$ separates $\angle A B C$ into two parts ($\angle 1$ and $\angle 2$), then the measure of $m \angle A B C>\angle 1$ and $m \angle A B C>\angle 2$. (The measure of an angle is greater than the measure of any its parts.)

Example 2: According to the angle addition postulate $\angle A B C=\angle 1+\angle 2$

Lemma 3.5.3: If $\angle 3$ is an exterior angle of a triangle and $\angle 1$ and $\angle 2$ are non adjacent interior angles, then, $m \angle 3>m \angle 1$ and $m \angle 3>m \angle 2$. The measure of an exterior angle is greater than the measure of either of the nonadjacent angles.)

Lemma 3.5.4: In $\triangle A B C$, if $\angle C$ is aright angle or an obtuse angle, then the measure of $m \angle C>m \angle B$ and $m \angle C>m \angle A$.

Proof:
In $\triangle A B C, m \angle A+m \angle B+m \angle C=180^{\circ}$. With the $m \angle C \geq 90^{\circ}$, it follows the $m \angle A+m \angle B \leq 90^{\circ}$, and each angle ($m \angle A$ and $m \angle B$) must be acute. Thus $m \angle C>$ $m \angle B$ and $m<C>m \angle A$.

Lemma 3.5.5: (Addition Property of Inequality) If $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}>\mathrm{d}$, then $\mathrm{a}+\mathrm{c}>\mathrm{b}+\mathrm{d}$.
Theorem 3.5.6: If one side of a triangle is longer than a second side then the measure of the angle opposite the longer side is greater than the measure of the angle opposite the shorter side.

Example 3: Given the $\triangle A B C$ with sides of the following lengths $\mathrm{AB}=4, \mathrm{AC}=7$ and $\mathrm{BC}=5.5$. Arrange the angles by size.

Theorem 3.5.7: If the measure of one angle of a triangle is greater than the measure of a second angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.

Example 4: Given $\quad \triangle R S T$ with angles that have the following measures. Arrange the sides in order of size.

Theorem 3.5.10: (Triangle Inequality) The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given: $\triangle A B C$

Theorem 3.5.10: (Triangle Inequality) The length of any side of a triangle must be between the sum and difference of the other two sides.

Example 5: Which of the following sets of numbers cannot represent the sides of a triangle?
a. 7, 7, 3
b. $4,5,1$

Example 6:
Given: $\overline{\mathrm{BD}}$ bisects $\angle A B C$
Prove: $A B>A D$

Statements

Reasons

1. $\overline{B D}$ bisects $\angle A B C$
2. $m \angle 1=m \angle 2$
3.
4. $m<3>m<2$

3
4. $m \angle 3>m<1$
4.
5. $\mathrm{AB}>\mathrm{AD}$
5.

Example 7:
A. Arrange sides from smallest to largest

B. Arrange angles from smallest to largest.

Example8:

List the sides of $\triangle A B C$ in order from longest to shortest.

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{~A}=4 \mathrm{x}+20 \\
& \mathrm{~m} \angle B=2 \mathrm{x}+10 \\
& \mathrm{~m} \angle \mathrm{C}=4 \mathrm{x}-20
\end{aligned}
$$

Determined, Underdetermine and Overdetermined:

Determined: Draw a line segment from A perpendicular to BC so that the terminal point is on BC . (Determined because the line from A perpendicular to BC is unique.

Underdetermine: Draw a line segment from A to $\overline{\mathrm{BC}}$ so that the terminal point is on $\overline{\mathrm{BC}}$. (Undetermined because many line segments are possible.

Overdetermined: Draw a line segment from A to $\overline{\mathrm{BC}}$ so that it bisects BC . (Overdetermined because the line segment from A drawn perpendicular to $\overline{\mathrm{BC}}$ will not contain the midpoint M of $\overline{\mathrm{BC}}$.

A•

Example 9:

a. Draw a line segment from A perpendicular to m. Describe the segment as determined, underdetermined, or overdetermined.
b. Draw a segment $A B$ parallel to line m. Describe the segment as determined, underdetermined, or overdetermined.

