M 1312 5.3

Postulate 15: If the three angles of one triangle are congruent to the three angles of a second triangle, then the triangles are similar (AAA).

Corollary 5.3.1: If two angles of one triangle are congruent to the two angles of another triangle, then the triangle are similar (AA).

#### (**AA**):

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

### Example 1:

Given:  $\angle A \cong \angle P$ ,  $\angle C \cong \angle R$ 





Conclusion:

### **(SSS):**

If each side of one triangle and the corresponding side of another triangle are proportional, then the triangles are similar.

#### Example 2:

Given 
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$





Conclusion:

#### (SAS):

If the measures of two sides of one triangle are proportional to the corresponding sides of another triangle AND the included angles are congruent, then the triangles are similar.

#### Example 3:

Given:  $\frac{AB}{PQ} = \frac{BC}{QR}$  and  $\angle B \cong \angle Q$ 



Conclusion:

**Example 4:** In the figure below,  $AB \parallel DE$ , DA = 2, CA = 8, and CE = 3. Find CB.



#### **RULES:**

- 1) If two triangles are similar, then the <u>perimeters are proportional</u> to the measures of corresponding sides.
- 2) If two triangles are similar, then the measures of the corresponding altitudes (form 90°) are proportional to the measures of the corresponding sides.
- 3) If two triangles are similar, then the measures of the <u>corresponding angle bisectors</u> of the triangles <u>are proportional</u> to the measures of the <u>corresponding sides</u>.
- 4) If two triangles are similar, then the measures of the corresponding <u>medians are proportional</u> to the measures of the corresponding sides.

#### Example 5:

 $\triangle$ ABD ~  $\triangle$ ADC. If AD=16, AC=31, and DC=23, find the perimeter of  $\triangle$ ABD.



CSSTP: Corresponding sides of similar triangles are proportional.

CASTC: Corresponding angles of similar triangles are congruent.

Theorem 5.3.2: The lengths of the corresponding altitudes of similar triangles have the same ratio as the lengths of any pair of corresponding sides.

## Example 6:

 $\Delta PQR \sim \Delta TUV.$  IF QO is an altitude of  $\Delta PQR,$  and US is an altitude of  $\Delta TUV,$  then complete the following:

$$\frac{QO}{US} = \frac{QR}{?}$$

$$\frac{QO}{US} = \frac{?}{TU}$$





## Example 7: Find the value of x and y.

### $\Delta PQR \sim \Delta SQT$



### Example 8:

a.

x = \_\_\_\_\_







**Theorem 5.3.3:** (SAS ~) If an angle of one triangle is congruent to an angle of a second triangle and the pairs of sides including the angles are proportional, then the triangles are similar.

**Theorem 5.3.4:**(SSS ~) If the three sides of one triangle are proportional to the three consecutive sides of one second triangle, then the triangles are similar.

# Example 9:

Determine if the triangles are similar and give a reason for your answer (AA, SSS, SAS).

a. similar? \_\_\_\_\_ reason \_\_\_\_\_



c. similar? \_\_\_\_\_ reason \_\_\_\_\_





d. similar? \_\_\_\_\_ reasson\_\_\_\_





**Example 10:** In the figure below,  $FG \cong EG$ , BE = 15, CF = 20, AE = 9, DF = 12. Determine which triangles in the figure are similar.



Lemma 5.3.5: If a line segment divides two side of a triangle proportionally, then this line segment is parallel to the third side.

Example 11: Given ΔABC ~ ΔDBE

If AC = 10, DE = 8, AD = 4. Find DB



Example 12: Given ΔABC ~ ΔDBE

CB = 12, CE = 8, AD = 4.

Find BD

