THESE ARE ALWAYS RIGHT TRIANGLES !!!!

45-45-90 Triangles

The ratio of the sides of a 45-45-90 triangle are: $x:x:x\sqrt{2}$

45-45-90

if this measure is given:	and you want this measure:	then do this:
the leg	hypotenuse	multiply the leg by $\sqrt{2}$
hypotenuse	the leg	divide hypotenuse by $\sqrt{2}$

remember: the legs of a 45-45-90 are the SAME measure!

$$Leg = \frac{hypotenuse}{\sqrt{2}} \qquad Hypotenuse = Leg(\sqrt{2})$$

<u>30-60-90 Triangles</u>

The ratio of the sides of a 30-60-90 triangle are: x: $x\sqrt{3}$: 2x

The short leg is always opposite the 30° angle!

30-60-90

if this measure is given:	and you want this measure:	then do this:
short leg	hypotenuse	multiply short leg by 2
short leg	long leg	multiply short leg by $\sqrt{3}$
long leg	short leg	divide long leg by $\sqrt{3}$
hypotenuse	short leg	divide hypotenuse by 2

remember: it is best to find the measure of the short leg first (that is if it is not given)

Short Leg = $\frac{\text{hypotenuse}}{2}$

Short Leg = $\frac{\log \log}{\sqrt{3}}$

Hypotenuse = 2 (short leg)

Long Leg = (short leg) $\sqrt{3}$

Theorem 5.5.1 and Theorem 5.5.2 is summarized on the previous page.

Example 1:

Find the missing sides for each of the following:

Example 2:

Rectangle find the values for and y.

5.5

Example 3:

The length of the side of an equilateral triangle is 8. Find the length of altitude.

Example 4:

Given $\triangle ABC$ is a right triangle with angle A is 90°, $BC = 6\sqrt{2}$ and the m $\angle ACT = 150^{\circ}$. Find AB and AC.

Example 5:

A tightrope performer in a circus begins his act by walking up a wire to a platform that is 120 feet high. If the wire makes an angle of 30° with the ground, how far does he walk along the wire to reach the platform? Assume the pole with the platform is vertical.