45-45-90 Triangles

The ratio of the sides of a 45-45-90 triangle are: $x: x: x \sqrt{2}$

45-45-90

if this measure is given:	and you want this measure:	then do this:
the leg	hypotenuse	multiply the leg by $\sqrt{2}$
hypotenuse	the leg	divide hypotenuse by $\sqrt{2}$

remember: the legs of a 45-45-90 are the SAME measure!
$\operatorname{Leg}=\frac{\text { hypotenuse }}{\sqrt{2}} \quad$ Hypotenuse $=\operatorname{Leg}(\sqrt{2})$
30-60-90 Triangles
The ratio of the sides of a 30-60-90 triangle are: $x: x \sqrt{3}: \mathbf{2 x}$
The short leg is always opposite the 30° angle!

30-60-90

if this measure is given:	and you want this measure:	then do this:
short leg	hypotenuse	multiply short leg by 2
short leg	long leg	multiply short leg by $\sqrt{3}$
long leg	short leg	divide long leg by $\sqrt{3}$
hypotenuse	short leg	divide hypotenuse by 2

remember: it is best to find the measure of the short leg first (that is if it is not given)

Short Leg $=\frac{\text { hypotenuse }}{2}$

Short Leg $=\frac{\text { long leg }}{\sqrt{3}}$
Hypotenuse = 2 (short leg)

Long Leg $=(\mathbf{s h o r t} \operatorname{leg}) \sqrt{3}$

Theorem 5.5.1 and Theorem 5.5.2 is summarized on the previous page.

Example 1:

Find the missing sides for each of the following:
a.

b.

c.

d..

e.

f.

Example 2:

Rectangle find the values for and y .

Example 3:

The length of the side of an equilateral triangle is 8 . Find the length of altitude.

Example 4:

Given $\triangle A B C$ is a right triangle with angle A is $90^{\circ}, B C=6 \sqrt{2}$ and the $m \angle A C T=150^{\circ}$. Find $A B$ and $A C$.

Example 5:

A tightrope performer in a circus begins his act by walking up a wire to a platform that is $\mathbf{1 2 0}$ feet high. If the wire makes an angle of 30° with the ground, how far does he walk along the wire to reach the platform? Assume the pole with the platform is vertical.

