Divided proportionally:
Given line segments:

$\overline{\mathrm{AC}}$ and $\overline{\mathrm{DE}}$ are divided proportionally at the points B and E respectively.

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}} \text { or } \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{DE}}{\mathrm{EF}}
$$

Example 1: Use the figure form above. If $\mathrm{AB}=5, \mathrm{BC}=3$ and $\mathrm{DF}=7$, find EF .

Theorem 5.6.1: If a line is parallel to one side of a triangle and intersects the other two sides, then it divides these sides proportionally.

$$
\frac{\mathrm{AD}}{\mathrm{AE}}=\frac{\mathrm{DB}}{\mathrm{EC}}
$$

Example 2: Use the figure from above. D and E divide $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ proportionally. If $\mathrm{AD}=6$, $\mathrm{DB}=8$ and $\mathrm{EC}=10$. Find AE .

Example 3: Problem from 4.2. Notice the difference.

Points "M" and "N" are midpoints of ST and SV, respectively. Find "x", MN, and TV.

Example 4:

$\Delta \mathrm{MNO} \sim \Delta \mathrm{MPQ}$. Find the values of "x" and " y ".

Corollary 5.6.2: when three (or more) parallel lines are cut by a pair of transversals, the transversals are divided proportionally by the parallel lines.

Example 5:

A. Find " x ". p ll q ll r.

B. Find "x" and " y ". a ll bllc.

Theorem 5.6.3: (The Angle Bisect Theorem) If a ray bisects one angle of a triangle, then it divides the opposite side into proportional segments whose lengths are proportional to the lengths of the to sides that form the bisected angle.

Example 6:

$\Delta \mathbf{X Y Z}, \overline{\mathbf{Y W}}$ bisects $\angle \mathbf{X Y W}$, if $\mathrm{XY}=4, \mathrm{YZ}=6$ and $\mathrm{XW}=3$. Find WZ .

Example 7:

$\Delta \mathbf{P M N}$ with $\overline{\mathbf{M R}}$ bisects $\angle \mathbf{N M P}$. If $\mathrm{MN}=2 \mathrm{x}, \mathrm{NR}=\mathrm{x}, \mathrm{RP}=\mathrm{x}+1$ and $\mathrm{MP}=3 \mathrm{x}-1$, find x and the measure of $\overline{\mathrm{MP}}, \overline{\mathrm{RP}}, \overline{\mathrm{MN}}$, and $\overline{\mathrm{NR}}$.

