Segments Divided Proportionally

Divided proportionally:

Given line segments:

 \overline{AC} and \overline{DE} are divided proportionally at the points B and E respectively.

	20	AB	
DE	EF	or $\frac{1}{BC}$	

Example 1: Use the figure form above. If AB = 5, BC = 3 and DF = 7, find EF.

Theorem 5.6.1: If a line is parallel to one side of a triangle and intersects the other two sides, then it divides these sides proportionally.

Example 2: Use the figure from above. D and E divide \overline{AB} and \overline{AC} proportionally. If AD = 6, DB = 8 and EC = 10. Find AE.

.

Example 3: Problem from 4.2. Notice the difference.

Points "M" and "N" are midpoints of ST and SV, respectively. Find "x", MN, and TV.

Example 4:

 Δ MNO ~ Δ MPQ. Find the values of "x" and "y".

Corollary 5.6.2: when three (or more) parallel lines are cut by a pair of transversals, the transversals are divided proportionally by the parallel lines.

Example 5:

A. Find "x". $p \parallel q \parallel r$.

B. Find "x" and "y". a ll b ll c.

Theorem 5.6.3: (The Angle Bisect Theorem) If a ray bisects one angle of a triangle, then it divides the opposite side into proportional segments whose lengths are proportional to the lengths of the to sides that form the bisected angle.

Example 6:

 ΔXYZ , \overline{YW} bisects $\angle XYW$, if XY = 4, YZ = 6 and XW = 3. Find WZ.

Example 7:

ΔPMN with **MR** bisects \angle **NMP**. If MN = 2x, NR = x, RP = x + 1 and MP = 3x - 1, find x and the measure of MP, RP, MN, and NR.