## Math 1312 <br> Section 8.1-8.2 <br> Perimeter and Area of Polygons

## Area and Perimeter formulas

1. Parallelogram: $A=b h$


| $l=$ length | w $=$ width |
| :--- | :--- |
| $P=$ perimeter | $\mathrm{b}=$ base |
| $\mathrm{h}=$ height | $\mathrm{d}=$ diagonal |
| $\mathrm{r}=$ radius | $\mathrm{m}=$ median |
| $\mathrm{a}=$ apothem |  |

2. Rectangle/square: $A=l w$

3. Triangle: $A=\frac{1}{2} b h$

4. Trapezoid: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ OR $A=m h$

5. Rhombus and kite: $A=\frac{1}{2} d_{1} d_{2}$


Heron's Formula: For any triangle with sides of lengths $a, b$ and $c$, the area is found by $A=\sqrt{s(s-a)(s-b)(s-c)}$ where $s$ is the semiperimeter of $\triangle A B C$ $\left(s=\frac{1}{2}(a+b+c)\right)$

Brahmagupta's Formula: For a quadrilateral with sides $a, b, c$, and $d$ the area is $A=\sqrt{(s-a)(s-b)(s-c)(s-d)} \quad\left(s=\frac{1}{2}(a+b+c+d)\right)$

Theorem: The ratio of the areas of two similar triangles (or any similar polygons) equals the squares of the ratios of the lengths of any two corresponding sides.

$$
\frac{A_{1}}{A_{2}}=\left(\frac{s_{1}}{s_{2}}\right)^{2}
$$

Example 1: What is the total area of the figure below:


Example 2: Find the area of each figure below:


Example 3: The area of a triangle is 216 square-units. If the height is 18 units, what is the length of the base?

Example 4: The diagonals of a rhombus are 21 and 16 centimeters long. Find the area of the rhombus.

Example 5: Compare the areas of two similar triangles in which each side of the first triangle 3 times as long as each side of the second.

Example 6: Find the area of a triangle with sides 4, 13, 15.

