Early Definitions and Postulates (1.3)

Four Parts of a Mathematical System

1. Undefined terms points, lines, planes
2. Definedterms Can be defined precisely
3. Axioms or postulates used to prove theorems
4. Theorems prove

Definition: An isosceles triangle is a triangle that has two congruent sides.

Characteristics of a good definition:

1. It names the term being defined.
2. It places the term into a set or category.
3. It distinguishes the defined term from other terms without providing unnecessary facts.
4. It is reversible. If a Δ has two congruent sides it is an isose Δ.

Definition: A line segment is the part of the line that consists of two points, known as endpoints and all points between them.

Postulate 1: Through two distinct points, there is exactly one _line
Postulate 2: The measurement of any line segment is a unique number. (Ruler_Postulate)

Definition: The distance between two points A and B is the \qquad length of the line segment $\overline{\mathrm{AB}}$ that joins the points.
Postulate 3: If X is a point on $\overline{A B}$ and $A-X-B$ then $A X+X B=A B$

Definition: Congruent (\cong) line segments are two lines that have the same \qquad .

Definition: The mid_point of a line segment is the point that separates the line segment into two congruent parts.

Example 1: Given M is the midpoint of $\overline{A B}, A M=3(x+3)$ and $M B=4(x-2)$. Find the length of $\overline{A B}$ and the value for x.

$$
\left.\begin{array}{rlrl}
A M & =M B \text { (Mist the mid pt) } \\
3(x+3) & =4(x-2) \\
3 x+9 & =4 x-8
\end{array} \quad \begin{array}{rlr}
9+8 & =4 x-3 x & 17
\end{array}\right) \quad \therefore A B=2(A M)
$$

Definition: Ray $A B$ denoted by $\overrightarrow{A B}$, is the union of $\overline{A B}$ and all points X on $\overleftrightarrow{A B}$ such that β is x between A and X.

Postulate 4: If two lines intersect, they intersect at a \qquad point

Definition: Parallel lines are lines that lie in the same plane but do \qquad intersect.

Postulate 5: Through three noncollinear points, there is exactly one \qquad plane C
Postulate 6: If two distinct planes intersect, then their intersection is a \qquad line

Postulate 7: Given two distinct points in a plane, the line containing these points also lies in that plane.

Theorem 1.3.1: The midpoint of a line is \qquad .

Angles and Their Relationships (1.4)

Definition: An angle is the union of two rays that share a common \qquad end point .

Postulate 8: The measurement of an angle is a unique positive number.
Postulate 9: If a point D lies in the interior of an angle ABC , then $\angle A B D+\angle D B C=\angle A B C$

Example 2: Given: $m \angle A B D=2 x+5$

$$
\begin{aligned}
& m \angle D B C=3 x-4 \\
& m \angle A B C=86^{\circ}
\end{aligned}
$$

Find $m \angle D B C$

$m \angle D B C=3(17)-4$
47°

Definition: Two angles are \qquad (adj. $\angle s$) if they have a common vertex and a common side between them. (Check-out the last example).

Definition: \qquad angles ($\cong \angle s$) are two angles of the same measure.
Definition: The bisector of an angle is the ray that separates the given angle into two congruent angles.

Example 3: Given: $\overrightarrow{\mathrm{BD}}$ bisects $\angle A B C$

$$
\begin{aligned}
& m \angle \mathrm{ABD}=\mathrm{x}+\mathrm{y} \\
& m \angle D B C=2 x-2 y \\
& m \angle A B C=64^{\circ} \text { find } \mathrm{x} \text { and } \mathrm{y}
\end{aligned}
$$

Definition: \qquad Angles - is where to straight lines intersect, the pairs of nonadjacent angles formed are vertical angles. Vertical angles are congruent. The two adjacent angles are supplementary.

$$
\begin{aligned}
& m \angle 1+m \angle 2=180^{\circ} \\
& m \angle 2+m \angle 3=180^{\circ} \\
& m \angle 3+m \angle 4=180^{\circ} \\
& m \angle 4+m L 1=180^{\circ}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& m \angle A B D=x+y \\
& m \angle D B C=2 x-2 y \\
& m \angle A B C=64^{\circ}
\end{aligned}
$$

$\overrightarrow{B D}$ is the bisector

$$
\begin{aligned}
m \angle A B D+m \angle D B C & =m \angle A B C \\
x+y+2 x-2 y & =64 \\
3 x-y & =64
\end{aligned}
$$

Since $\overrightarrow{B D}$ is the bisector

$$
\begin{aligned}
m \angle A B D & =m \angle D B C \\
x+y & =2 x-2 y \\
3 y & =x
\end{aligned}
$$

$$
\begin{aligned}
3(3 y)-y & =64 \\
9 y-y & =64
\end{aligned}
$$

$$
6 y=64 \Rightarrow y=8
$$

$$
\begin{aligned}
\therefore \quad x & =3 y=3(8)=24 \\
\therefore m \& A D & =x+y=24+8=32^{\circ} \\
m \angle B C & =2 x-2 y=2(24)-2(8)=32^{\circ}
\end{aligned}
$$

Example 4: Use the figure from above.
a. If $\mathrm{m} \angle 4=97^{\circ}$, find the measures of the other 3 angles.

$$
\begin{array}{rlrl}
m \angle 4 & =m \angle 2 & \therefore \angle L & \\
M L 1+m \angle 2 & =180 & & m \angle 3= \\
m L 1+97 & =180 & \therefore 1 \\
m L 1 & =180-97 & =83^{\circ} &
\end{array}
$$

b. If $\mathrm{m} \angle 1=\mathrm{x}+7$ and the $\mathrm{m} \angle 2=2 \mathrm{x}-23$, find x and the measures of four angles.

$$
\begin{gathered}
m \geq+m \angle 2=180 \\
x+7+2 x-23=180 \\
3 x-16=180
\end{gathered} \quad\left\{\begin{array}{l}
3 x=196 \\
x=\frac{196}{3}=65.33^{\circ}
\end{array}\right.
$$

$$
m \angle 1=65.33+7=72 \cdot 33
$$

$$
m \angle 3=72.33 \text { (as } m \angle 1=m \angle 3)
$$

Example 5: Use the figure to answer each questions.

$$
\begin{aligned}
m \angle 3+45 & =180 \\
m \angle 3 & =180-45=135^{\circ}
\end{aligned}
$$

Hint: $\mathbf{m} \angle 3+\mathbf{m} \angle 5+\mathbf{m} \angle 6=180^{\circ}$

$$
\begin{aligned}
& \angle \mathbf{3}+\mathbf{m} \angle \mathbf{5}+\mathbf{m} \angle 6=\mathbf{1 8 0 ^ { \circ }} \\
& 30+135+m \angle 6=180 \Rightarrow 165+m \angle 6=180 \Rightarrow m \angle 6=15^{\circ}
\end{aligned}
$$

TRY THESE: textbook page 27, \#'s 14, 16, 26 and textbook page 35 \#'s 10, 18, 23, 26

