Early Definitions and Postulates (1.3)

Four Parts of a Mathematical System

1. Undefined terms points, lines, planes

2. Defined terms Can be defined precisely

3. Axioms or postulates used to prove theorems

4. Theorems >70√e

Definition: An is osceles triangle is a triangle that has two congruent sides.

Characteristics of a good definition:

1. It names the term being defined.

2. It places the term into a set or category.

3. It distinguishes the defined term from other terms without providing unnecessary facts.

4. It is reversible. If a A has two congruent sides it is an isosc A.

Definition: A ______ is the part of the line that consists of two points, known as endpoints and all points between them.

Postulate 1: Through two distinct points, there is exactly one _____.

Postulate 2: The measurement of any line segment is a unique number. (R \(\)\eartrightarrow\express{\epsilon} \) Postulate)

Definition: The distance between two points A and B is the ______ of the line segment AB that joins the points.

Postulate 3: If X is a point on \overrightarrow{AB} and A – X – B then AX + XB = AB

Definition: Congruent (≅) line segments are two lines that have the same __length_____

Definition: The wide point of a line segment is the point that separates the line segment into two congruent parts.

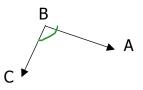
Example 1: Given M is the midpoint of \overline{AB} , AM = 3(x+3) and MB = 4(x - 2). Find the length of \overline{AB} and the value for x. A = MB (M is the mid A = AB)

$$AM = MB$$
 (Mis the mid pt)
 $3(x+3) = 4(x-2)$ 9+8=4x-3x
 $3x + 9 = 4x - 8$ $AM = 3(17+3) = 60$ = 120

Definition: Ray AB denoted by \overrightarrow{AB} , is the union of \overrightarrow{AB} and all points X on \overrightarrow{AB} such that B is between A and X.

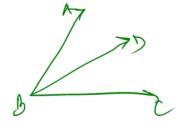
Postulate 4: If two lines intersect, they intersect at a <u>point</u>.

Definition: Parallel lines are lines that lie in the same plane but do __not____ intersect.


Postulate 5: Through three noncollinear points, there is exactly one __p\ane__

Postulate 6: If two distinct planes intersect, then their intersection is a ________

Postulate 7: Given two distinct points in a plane, the line containing these points also lies in that plane.


Theorem 1.3.1: The midpoint of a line is ______.

Angles and Their Relationships (1.4)

Postulate 8: The measurement of an angle is a unique positive number.

Postulate 9: If a point D lies in the interior of an angle ABC, then $\angle ABD + \angle DBC = \angle ABC$

Example 2: Given: $m \angle ABD = 2x + 5$

$$m \angle DBC = 3x - 4$$

$$m \angle ABC = 86^{\circ}$$

$$m \angle ABC = 86^{\circ}$$
 MLABD + MLDBC = MLABC
 $22+5+32-4=86$
 $5x+1=86$

5 x = 85 X = 12

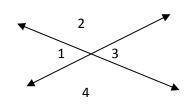
m (D13C= 3(A)-4

Find
$$m \angle DBC$$

Definition: Two angles are ______ (adj.
$$\angle s$$
) if they have a common vertex and a common side between them. (Check-out the last example).

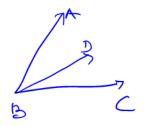
Definition: _____ angles (
$$\cong \angle s$$
) are two angles of the same measure.

Example 3: Given: BD bisects ∠ ABC


$$m \angle ABD = x + y$$

$$m \angle DBC = 2x - 2y$$

$$m \angle ABC = 64^{\circ}$$
 find x and y


Definition: Vertical Angles - is where to straight lines intersect, the pairs of nonadjacent angles formed are vertical angles. Vertical angles are congruent. The two adjacent angles are supplementary.

$$ML1 + ML2 = 180^{0}$$

 $ML2 + ML3 = 180^{0}$
 $ML3 + ML4 = 180^{0}$
 $ML4 + ML1 = 180^{0}$

m 1 = m 23 } vertical
m 2 = m24 } vertical
angles

Page 3 | 4

$$MLABD + MLDBC = MLABC$$

 $X+Y+2X-2Y = 64$

$$-3x-y=64$$

Since BD is the bisector

$$m \angle ABD = m \angle DBC$$

 $x+y = 2x-2y$
 $3y = x$

$$3(37) - y = 64$$

 $9y - y = 64$
 $6y = 64 \Rightarrow y = 8$

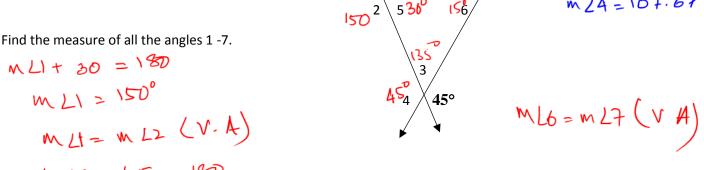
$$x = 3y = 3(8) = 24$$

$$2. \text{ WLABO} = X+Y = 24+8 = 32^{\circ}$$

 $\text{MLABO} = 2x-2y = 2(24) - 2(8) = -32^{\circ}$

Example 4: Use the figure from above.

a. If $m\angle 4 = 97^{\circ}$, find the measures of the other 3 angles.


$$M \le 1 + M \le 2 = 180$$

 $M \le 1 + 97 = 180$
 $M \le 1 = 180 - 97 = 83^\circ$

b. If $m\angle 1 = x + 7$ and the $m\angle 2 = 2x - 23$, find x and the measures of four angles.

$$M_{21} + M_{42} = 180$$
 $X + 7 + 2x - 23 = 180$
 $3x - 16 = 180$

$$m L1 = 65.33 + 7 = 72.33$$

 $m L3 = 72.33$ (as $m L1 = m L3$)

Example 5: Use the figure to answer each questions.

 $M_{13} + 45 = 180$ $M_{13} = 180 - 45 = 135^{\circ}$

Hint:
$$m \angle 3 + m \angle 5 + m \angle 6 = 180^{\circ}$$

 $30 + 135 + m \angle 6 = 180 \Rightarrow 165 + m \angle 6 = 180 \Rightarrow m \angle 6 = 15^{\circ}$

TRY THESE: textbook page 27, #'s 14, 16, 26 and textbook page 35 #'s 10, 18, 23, 26