Introduction to Geometric Proof

Properties of Equality

Addition Property of Equality Subtraction Property of Equality Multiplication Property of Equality

If a = b, then a + c = b + cIf a = b, then a - c = b - cIf a = b, then $a \cdot c = b \cdot c$

Division Property of Equality

If a = b and $c \ne 0$, then $\frac{a}{c} = \frac{b}{c}$

Example 1:

a. If 3x = 9, then x = 3

uses the multiplication or division property

b. If x + 2 = 10, then x = 8

uses the subtraction property

c. If $\frac{2}{3}x = 8$, then x = 12

uses the multiplicand property

Further properties of Algebra

Distributive Property

 $a(b + c) = a \bullet b + a \bullet c$

Substitution Property

If a = b, then a replaces b in any equation.

Transitive Property

If a = b and b = c, then a = c.

Symmetric Property

If a = b, then b = a.

Reflexive Property

If a = a

Prove: x = -1**Example 2:** Given: 3x + 2 = 4 + 5x

Statements	Reasons
1. $3x + 2 = 4 + 5x$	1. Given
$2. \ 3x + 2 - 4 = 4 - 4 + 5x$	2. Subtraction
3. $3x - 2 = 5x$	3. Simplification
$4. \ 3x - 3x - 2 = 5x - 3x$	4. subtraction
5 2 = 2x	5. Simplification
6. $\frac{1}{2}(-2) = \left(\frac{1}{2}\right)2x$	6. Multiplication
7. $-1 = x$ 8. $x = -1$	7. Simplification 8. Symmetric

Example 3: Given the drawing

Suppose that AB = 9, BC = 2 and CD = 9 is AC = BD and why?

$$AB = CD$$

 $AB+BC = CD+BC$
 $AC = CD$

AB+BC = CD+BC Transitive property

Example 4:

Given: B is the midpoint of the line \overrightarrow{AC}

Prove: $AB = \frac{AC}{2}$

Statements	Reasons	
1. B is the midpoint of \overline{AC}	1. Given	
2. AB = BC	2. Det of mid Pt	
3. AB + BC = AC	3. Segment Addition	ı
4. AB + AB = AC	4. Substution	
5. $2 (AB) = AC$	5. Addition/substitu	n o'h
6. AB = $\frac{AC}{2}$	6 Dinsim/multipl	

Be sure to study the examples in the book for this section.

Example 5: Answer the following questions.

a. If the $m \angle 1 + m \angle 2 = 90^{\circ}$ and $m \angle 3 = m \angle 1$ what is true?

ml3 + ml2= 900 substitution

b. K is in the interior of $\angle GHJ$ so what can we conclude about $m\angle GHK + m\angle KHJ = \emptyset \emptyset$

Angleaddition

c. Suppose that $m\angle ABC = 128^{\circ}$. If \overline{BD} bisects $\angle ABC$, determine the $m\angle ABD$

MLABD + MLABD = MLABC = 128 = 640 MLABD = MLABC = 128 = 640

3