Definitions:

$>$ A plane is a two dimensional geometric object. It has infinite length and infinite width but no thickness.

Parallel lines are lines that lie in the same plane but do not intersect. (Symbol \|)
Perpendicular lines are two lines that meet to form congruent adjacent angles.
(Symbol \perp)

Theorem1.6.1: If two lines are perpendicular, then they meet to form

Given: $\overleftrightarrow{\mathbf{A B}} \perp \overleftrightarrow{\mathbf{C D}}$ intersecting at \mathbf{E}.
Prove: $\angle \mathrm{AEC}$ is a right angle

Statements

1. $\overleftrightarrow{\mathbf{A B}} \perp \overleftrightarrow{\mathbf{C D}}$ intersecting at \mathbf{E}.
2. $\angle \mathrm{AEC} \cong \angle \mathrm{CEB}$
3. $\mathrm{m} \angle \mathrm{AEC} \cong \mathrm{m} \angle \mathrm{CEB}$
4. $\angle \mathrm{AEB}$ is a straight angle
5. $\mathrm{m} \angle \mathrm{AEC}+\mathrm{m} \angle \mathrm{CEB}=\angle \mathrm{AEB}$
6. $\mathrm{m} \angle \mathrm{AEC}+\mathrm{m} \angle \mathrm{CEB}=180^{\circ}$
7. $\mathrm{m} \angle \mathrm{AEC}+\mathrm{m} \angle \mathrm{AEC}=180^{\circ}$ or
$2(\mathrm{~m} \angle \mathrm{AEC})=180^{\circ}$
8. $\mathbf{m} \angle \mathrm{AEC}=90^{\circ}$
9. $\angle \mathrm{AEC}$ is a right angle
10. Given
11. Perpendicular lines meet to form
12. measures are \cong
13. Straigut angles measure 180°
14. Angle addition postulate
15. Substitution
16. Substitution
17. Division
18. Def of right angle

M 1312
Table 1.8

Relation
Is equal to
Is greater than
Is perpendicular to

Is complementary to

Is congruent to
Is a brother

Object Related

numbers
numbers
lines
angles
line segments
people

Example

$$
2+3=5
$$

$7>5$

$$
n \perp m
$$

$\angle 1$ is comp to $\angle 2$
$\overline{\mathbf{A B}} \equiv \overline{\mathbf{C D}}$
Mike is brother of Tom

Properties:

Relate

Reflexive property: aRa ($5=5$, equality of numbers has a reflexive property).

Symmetric property: If $a R b$, then $b R a$. (If $\boldsymbol{n} \perp \boldsymbol{m}$, then $\boldsymbol{m} \perp \boldsymbol{n}$, perpendicular lines have the symmetric property). ' $<$ ' $2<3$ True $3<2$ False ' \langle 'Symmetric
Transitive property: If aRb and bRc , then aRc, (If $\mathbf{m} \angle \mathbf{1} \equiv \mathbf{m} \angle \mathbf{2}$ and $\mathbf{m} \angle \mathbf{2} \equiv \mathbf{m} \angle \mathbf{3}$, then $\mathbf{m} \angle \mathbf{1} \equiv \mathbf{m} \angle \mathbf{3}$, congruence of angle is transitive).

Example 2: Given the line segment

a. An example of reflexive property: $A B=A B / B C=B C / C D=C D$
b. An example of the transitive property:

$$
\begin{array}{rlrl}
\text { suppose } & A B & =C D & C D=D E \\
\therefore . & A B & =D E &
\end{array}
$$

c. An example of the symmetric property:

$$
A B=B A
$$

Example 3: Given: $\angle A B C$ and $\angle C B D$ are complementary, $\angle C B D$ and $\angle D B E$ are complements.

Use transitive property to show that $\angle A B C \cong \angle D B E$

$$
\begin{aligned}
& \text { e property to show that } \angle A B C \cong \angle D B E \quad(\mathrm{~b}) \\
& (a) m \angle A B C+m \angle C B D=900^{\circ} \\
& \text { (c) } m \angle C B D+m \angle D B E=90^{\circ} \text { (b) }
\end{aligned}
$$

$$
m \angle A B C+m \angle C B D=m \angle C B D+m \angle D B E
$$

Transitive prop
NOW TRY: p. 48 \#' 1 1, 4, 11

$$
\begin{aligned}
& a=b Y \Rightarrow a=C \\
& c=b y \angle A B C=m \angle D B E
\end{aligned}
$$

