Summary of Postulates and Theorems from Section 2.1

If two parallel lines are cut by a transversal, then

 $\frac{23 + 26 = 180}{23 + 26 = 180}$ Each pair of exterior angles on the same side of the transversal are supplementary

Example:

Example 1: Use the figure below. If the measure of $\angle 4 = 48^{\circ}$. Find the measure angles 1-3 and 5-8.

Proof:

$$\begin{array}{c|cccc}
 & t & & \\
 & 1 & 2 & r \\
\hline
 & 3 & 4 & \\
\hline
 & 5 & 6 & s \\
\hline
 & 7 & 8 & \\
\end{array}$$

a. If the
$$m \angle 5 = 3x + 13$$
 and $m \angle 8 = 4x + 3$. Find the value of x and the measure of $m \angle 5$

and
$$\angle 6$$
. $m \angle 5 = M \angle 8$ (V. A)
 $3z+13 = 4z+3$
 $13-3 = 4x-3z$
 $10 = x$

$$m 25 = 3.10 + 13$$

= 43
 $m 25 + m 26 = 180^{\circ}$
 $m 25 + m 26 = 180^{\circ}$ 43°

If the $m \angle 3 = 7x - 10$ and $m \angle 5 = 70 - x$. Find the value of x and the measure of b. $m \angle 3$ and $\angle 5$.

$$m 23 + m 25 = 180^{9}$$

 $7x-10 + 70 - x = 180$
 $6x + 60 = 180$
 $6x = 180 - 60$
 $6x = 120$
 $6x = 120$

$$m 23 = 7.20 - 10$$

= 130°
 $m 25 = 70^{\circ} - 20^{\circ}$
= 50°

Example 3: a. Given: AC $\mid \mid$ BD and AB $\mid \mid$ DC Which angle(s) measure the same as $\angle B$?

b. If $\angle A = 4x + 2$ and $\angle B = 4x - 2$ Find the measure of all angles .

Example 4:

EF bisects ∠AFG

Find the measures of angles 1-13 for part a

a. Given
$$m \angle 1 = 100^{\circ}$$

B. Given:
$$m \angle 3 = 4x - 9$$

$$m \angle 5 = x + 19$$