Indirect Proof
(either recall these rules or find in 2.2 to fill in the table below)

Here is a conditional statement:
If two sides of a triangle are equal, then the triangle is isosceles.
Converse: $Q \rightarrow P$
If the triangle is isosceles, then the triangle has two equal sides.

Inverse: $\sim P \rightarrow \sim Q$
If the triangle does not have two equal sides, then the triangle is not isosceles.
Contra-positive: $\sim Q \rightarrow \sim P$
If a triangle is not isosceles, then the triangle does not have two equal sides.
Example 1:
Write the inverse, converse, and contra-positive of the following statement.
If a number is positive, then the number is greater than zero.
Converse: If a number is greater than 3 gro, then the $Q \rightarrow P$ number is positive

Inverse: If amymber is not pocinves then the $\sim P \rightarrow \sim Q$ number is not greater thou $3 e r 0$
contrapositive: If a no. ie not greater then $3 e \infty$, $\sim k \rightarrow \sim p$ then the no. is not positive.

Be sure to look over example 1 in 2.2 page 77. Copy and place in your notes ;)

Law of Negative Inference (Contra-positive)

This will help so you will understand why contra-positive works.

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{Q} \text { If } P_{1} \text { then } Q \\
& \sim Q \rightarrow 1^{\text {st }, ~} \sim Q \\
& \sim P \rightarrow \text { conclusion, } \sim P
\end{aligned}
$$

If Pablo lives in Guadalajara, the he lives in Mexico. Pablo does not live in Mexico.

Conclusion is that: Pablo does not live in Guadalajara.
The Law of Negative Inference is referred to as Indirect Proof.

Example 2:

Assuming that statements 1 and 2 are true, draw a valid conclusion.

$$
P
$$

1. If two angles are both right angles, then the angles are congruent.
2. $\angle R$ and $\angle S$ are not congruent. $\sim Q$

$$
\begin{aligned}
\therefore & \sim l^{\prime} \\
& \text { Then } \angle R \&<S \text { are not rt- } \angle S
\end{aligned}
$$

Example 3: We are now going to look at a proof done first direct and then indirect.

Given: $\angle \mathbf{1} \cong \angle \mathbf{2}$
Prove: $m \| n$

Direct Proof:
Statements

1. $\angle 1 \cong \angle 2$
2. $\angle 1 \cong \angle 3$
3. $\angle 3 \cong \angle 2$
4. $m \| n$

Indirect proof:
Statements

1. $\angle 1 \cong \angle 2$
2. m is not parallel to n
3. $\angle 1 \neq \angle 2$

Reasons

1. Given
2. Vertical Angles
3. Transitive
4. Corres poinding LS are $\underline{\underline{~}}$ then the lines are II.

Reasons

1. Given
2. Ass unption
3. ALternate interior LS are not $\underline{\underline{2}}$, then lines are ns II contradiction to the given condition Hence our assumption was wrong

Example 5: If $\angle 1 \neq \angle 2$, then $\angle 1$ and $\angle 2$ are not vertical angles. P Given: $\angle 1 \neq \angle 2$

Q Prove: $\angle 1$ and $\angle 2$ are not vertical angles.

Statements

2. $\angle 1 \cong \angle 2$
3. $\angle 1$ and $\angle 2$ are not vertical angles.

Reasons

1. Ass unyd ion
2. Vertical angles are \cong
3. Contradiction to the given as sumption $\angle 1 \neq \angle 2$ so $\angle l \& \angle L$ are not vertical.

OK, TRY THESE: p. 81 \#'s 19, 24

