The Angles of a Triangle

Definition: A triangle is the union of three line segments that are determined by three non-collinear points.

Parts of a triangle:

Types of triangles: [fill in the blanks]

Classified by Congruent sides

Scalenr

No congruent sides

Two congruent sides

Three congruent sides

Classify by Angles: all angles are acute all Ls less than AcuteLeds _____ one right angle Rt. Led Å one 2 1° more them 90°

one obtuse angle

Section 2.4

all angles are congruent

all LS are equal

Equiangular

Theorem 2.4.1: In a triangle, the sum measure of the interior angles is 180°.

Given: $\triangle ABC$ Prove: $m \angle A + m \angle B + m \angle C = 180^{\circ}$

Picture Proof:

Example 1: $\triangle ABC$, has $m \angle A = m \angle C = 76^{\circ}$, find $m \angle B$. What kind of triangle is $\triangle ABC$?

mLA + mL13 + mLC = 18076 + 14213 + 76 = 180 MLB = 180 - 152= 28° Isosceles and heute A

Corollary 2.4.2: Each angle of an equiangular triangle measures 60°.

Corollary 2.4.3: The acute angles of a right triangle are complementary.

$$mL1 + 90 + mL2 = 180$$

 $mL1 + mL2 = 90$

M 1312

Section 2.4

Example 2: Classify the triangle form the given information. We will use $\triangle ABC$.

Corollary 2.4.5: The measure of an exterior angle of a triangle equals the sum of the two measures of the two non adjacent interior angles,

3

Example 3: Given: $m \ge 1 = 8(x + 2)$ $m \angle 3 = 5x - 3$ $m \ge 5 = 5(x + 1) - 2$ Find *x* and measures of angles 1, 2, 3, 4 and 5.

Given: $m \angle 3 = 51^\circ$, and $m \angle 2 = 76^\circ$, find $m \angle 1$, $m \angle 4$, $m \angle 5$, and $m \angle 6$,

$$M20 = 76$$

$$M22 + M21 = 180$$

$$M21 = 180 - 76 = 104^{\circ}$$

$$M23 + M24 + M22 = 180$$

$$M24 = 180 - 76 - 51 = 53$$

mL4=mL1

Ь

 $-1 m L_5 = 53^{\circ}$

Example 5: In the figure provided, find the following:

a. Find $m \angle 1 + m \angle 2$

b.

$$ML(+L2 + 2B = 18)$$

 $ML(+ML2 = 90^{\circ} Tas MLB = 90^{\circ}]$

Find x if the
$$m \angle 1 = 4x + 7$$
 and $m \angle 2 = 2x + 3$
 $47 + 7 + 27 + 3 = 90$
 $6x + 10 = 90$
 $6x = 80 = 3 = 22 = 3$

Example 6; Given $\triangle ABC$

Solve for x and give the measure of $\angle ABC$ and $\angle ACD$.

$$3 \times -10 = 45 + \times +15$$
 mLABC = $35 + 16$
 $3 \times -10 = 60 + \times$
 $2 \times = 70$
 $\times = 36$
 $M 2ACD = 3(35) + 0$
 $= 95^{0}$

Example 7: If AB is perpendicular to BC, find the measure of each angle in the figure below.

$$m \angle 1 = 18p - 104 = 76^{\circ}$$

$$m \angle 2 = 104 - 36 = 68^{\circ}$$

$$m \angle 3 = 76^{\circ} (18 \angle 3 \lor 4)$$

$$m \angle 4 = 40^{\circ} (\lor 4)$$

$$m \angle 5 = 180 - 76 - 40 = 644^{\circ}$$

$$m \angle 6 = 90 - 64 \simeq 26^{\circ}$$

$$m \angle 7 = 18y - 40 = 140^{\circ}$$

$$m \angle 8 = 90 - 162$$

MORE?!?!? Try these: p. 93 #'s 16, 19, 28