The Angles of a Triangle

Definition: A triangle is the union of three line segments that are determined by three non-collinear points.

Parts of a triangle:

Types of triangles: [fill in the blanks]
Classified by Congruent sides
\qquad No congruent sides
scalene
__ Two congruent sides Isosceles

\qquad Three congruent sides Equilateral

Classify by Angles:
all angles are acute Acute beds
\qquad one right angle Rt. Led x

all Ls less than
90°
one obtuse angle Ob suse Led \triangle

one L is more them 90°
all angles are congruent Equiangular

Theorem 2.4.1: In a triangle, the sum measure of the interior angles is 180°.
Given: $\triangle A B C$
Prove: $m \angle A+m \angle B+m \angle C=180^{\circ}$
Picture Proof:

Example 1: $\triangle A B C$, has $m \angle A=m \angle C=76^{\circ}$, find $m \angle B$. What kind of triangle is $\triangle A B C$?

$$
\begin{aligned}
m \angle A+m \angle B+m \angle C & =180 \\
76+m \angle B+76 & =180 \\
m \angle B & =180-152 \\
& =28^{\circ}
\end{aligned}
$$

Isosceles and te ute Δ
Corollary 2.4.2: Each angle of an equiangular triangle measures 60°.

Corollary 2.4.3: The acute angles of a right triangle are complementary.

$$
\begin{aligned}
m \angle 1+90+222 & =180 \\
m \angle 1+m 22 & =90
\end{aligned}
$$

Example 2: Classify the triangle form the given information. We will use $\triangle A B C$.
a. $m \angle B=115^{\circ}$

06 fuse
b. $m \angle A=m \angle B=m \angle C \quad$ Sari ungula
c. $m \angle A=45^{\circ}, m \angle B=65^{\circ}, m \angle C=70^{\circ}$

Acuter Led U
d. $\angle A$ and $\angle C$ are complementary. Right Led Δ

$$
m \angle A+\cos B+C^{2} \angle C=180
$$

$$
m \angle A+m \angle C=90
$$

$$
m \angle B+9=180 \Rightarrow m \angle B=90
$$

Corollary 2.4.4: If two angles of one triangle are congruent to two angles of another triangle then the third angles are also congruent.

B

$$
\left.\begin{array}{rl}
I X \angle A \cong & \angle D \\
\angle B \cong \angle E
\end{array}\right\} \Rightarrow \angle C \cong \angle F
$$

Look over example 4, p.91. It is a good example and we will use this corollary will be used in chapter 3.

Corollary 2.4.5: The measure of an exterior angle of a triangle equals the sum of the two measures of the two non adjacent interior angles

$$
\begin{aligned}
& m \angle 1=m \angle B A C+m \angle A B C \\
& m \angle 2=m \angle B C A+m \angle A B C \\
& m \angle B=m \angle A C B+m \angle B A C
\end{aligned}
$$

Example 3: Given: $m \angle 1=8(x+2)$

$$
m \angle 3=5 x-3
$$

$$
\mathrm{m} \angle 5=5(\mathrm{x}+1)-2
$$

Find x and measures of angles 1,2,3, 4 and 5 .

$$
\begin{aligned}
m \angle 1 & =m \angle 5+m \angle 3 \\
8(x+2) & =5(x+1)-2+5 x-3 \\
8 x+16 & =5 x+5-2+5 x-3 \\
8 x+16 & =10 x \\
16 & =2 x \\
8 & =x
\end{aligned}
$$

$$
\begin{aligned}
m \angle 1 & =8(8+2)=80^{\circ} \\
m \angle 3 & =5(8)-3=37^{\circ} \\
m \angle 5 & =5(8+1)-2 \\
& =43^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
m \angle 1+m \angle 2 & =180 \\
m \angle 2 & =180-80 \\
& =100^{\circ}
\end{aligned}
$$

Example 4: Given $\triangle A B C$ and $l \| m$.

$$
\begin{aligned}
m \angle 3+m \angle 4 & =180 \\
m \angle 4 & =180-37 \\
& =143^{\circ}
\end{aligned}
$$

$$
[m \angle L=m \angle 2+m \angle 5]
$$

$$
m \angle 2=m \angle 6
$$

[In tAUt $\angle S$]

$$
\begin{aligned}
& \therefore m \angle 6=76 \\
& m \angle 2+m \angle 1=180 \\
& m \angle 1=180-76=104^{\circ} \\
& m \angle 3+m \angle 4+m \angle 2=180 \\
& m \angle 4=180-76-51=53^{\circ}
\end{aligned}
$$

$$
m \angle 4=m \angle 5
$$

$$
\therefore m \angle 5=53^{\circ}
$$

Example 5: In the figure provided, find the following:

a. Find $m \angle 1+m \angle 2$

$$
\begin{aligned}
m L 1+\angle 2+\angle B & =180 \\
m \angle 1+m \angle 2 & \left.=90^{\circ} \quad \text { [as } m \angle B=90^{\circ}\right]
\end{aligned}
$$

b. Find x if the $m \angle 1=4 x+7$ and $m \angle 2=2 x+3$

$$
\begin{aligned}
4 x+7+2 x+3 & =90 \\
6 x+10 & =90 \\
6 x & =80 \Rightarrow x=\frac{80}{6}=13.33
\end{aligned}
$$

Example 6; Given $\triangle A B C$

Solve for x and give the measure of $\angle A B C$ and $\angle A C D$.

$$
\begin{array}{rlrl}
3 x-10 & =45+x+15^{\circ} \quad m \angle A B C & =35+15 \\
3 x-10 & =60+x & & =50^{\circ} \\
2 x & =70 & \therefore M \angle A C D & =3(35)+10 \\
x & =35 & & 95^{\circ}
\end{array}
$$

Example 7: If $A B$ is perpendicular to $B C$, find the measure of each angle in the figure below.

$$
\mathrm{m} \angle 1=180-104=76^{\circ}
$$

$$
\mathrm{m} \angle 2=104-36=68^{\circ}
$$

$$
\mathrm{m} \angle 3=76^{\circ}(\angle 1 \& \angle 3 \vee A)^{L}
$$

$$
\mathrm{m} \angle 4=40^{\circ}(V A)
$$

$$
\mathrm{m} \angle 5=180-76-40=64^{\circ}
$$

$$
\mathrm{m} \angle 6=90-64=26^{\circ}
$$

$m \angle 3+m L 4+m \angle 5=180$

$$
\mathrm{m} \angle 7=18 y-40=140^{\circ}
$$

$$
\mathrm{m} \angle 8=90-m \angle 3
$$

$$
=90-76=14^{\circ}
$$

$$
\left[m \angle 7+m \angle 6+m \angle 8=180^{\circ}\right]
$$

$$
\begin{aligned}
m \angle S & =180-m \angle 3-m \angle 4 \\
m \angle 5+m \angle 6 & =90 \\
m \angle 6 & =90-m \angle 5
\end{aligned}
$$

MORE?!?!? Try these: p. 93 \#'s 16, 19, 28

