Convex Polygons

Definition: A polygon is closed plane figure whose sides are line segments that intersect only endpoints.

Convex

Concave

Not a Polygon

Special names for polygons with fixed numbers of sides [fill in the polygon column with the names]

Number of sides	Polygon
3	Trangle
4	Quad $n l a t r$ ral
5	pentagon
6	Hexagon
7	Heptago n
8	Octagon
9	Nonagon
10	Decagon
21	$21-\operatorname{gon} n$

Diagonal is a line segment that join hon-adjacent vertices.
A

C
D

Page 100: Number of diagonals

0 diagonals triangle

2 diagonals quadrilateral

5 diagonals pentagon

Theorem 2.5.1: The total number of diagonals D in a polygon of n sides is given by the formula $D=\frac{n(n-3)}{2}$

Example 1: Given the number of sides of a polygon find the number of diagonals.
a. Triangle

$$
h=3
$$

$$
D=\frac{3(3-3)}{2}=\frac{3(0)}{2}=\frac{0}{2}
$$

b. 11 sided polygon

$$
n=11
$$

$$
D=\frac{11(11-3)}{2}=\frac{11 \cdot 8^{4}}{2}=44
$$

Theorem 2.5.2: The sum S of the measures of the interior angles of a polygon with n sides is given by $S=(n-2) \bullet 180^{\circ}$. Note that $\mathrm{n}>2$ for any polygon.

Example 2: Find the sum of the interior angles of the given polygon.
a. Triangle

$$
n=3
$$

$$
S=(3-2) 180=1.180=180^{\circ}
$$

b. 11 sided polygon.

$$
n_{n=11}^{b=1 c^{n} \text { aspen }} s=(11-2) 180=9(180)=1620^{\circ}
$$

Example 3: Find the number sides a polygon has given the sum of the interior angles.

$$
\begin{array}{rl}
s=1980 & s=(n-2) 180 \\
1980 & =(n-2) 180 \\
\frac{1980}{180} & =n-2 \\
11 & =n-2 \\
13 & =n
\end{array}
$$

Regular Polygons

Definition: A regular polygon is a polygon that is both equilateral and equiangular.

Corollary 2.4.3: the measure I of each interior angle of a regular polygon or equiangular polygon of n sides $I=\frac{(n-2) \cdot 180^{\circ}}{n}$

Example 4: Find the measure of each of the interior angle of a regular hexagon.

$$
\begin{aligned}
n=6 \quad I=\frac{(n-2) \cdot 180}{n} & =\frac{(6-2) \cdot 180}{6} \\
& =\frac{4 \cdot 180^{30}}{6}=120^{\circ}
\end{aligned}
$$

Example 5: Each interior angle of a regular polygon is 150°. Find the number of sides.

$$
\begin{array}{r}
150=(n-2) \cdot 180 \\
150 n=(n-2) \cdot 180 \Rightarrow 150 n=180 n-360 \\
360=180 n-150 n \\
360=30 n \Rightarrow \frac{360}{30}=n
\end{array}
$$

$$
S=(n-2) \bullet 180^{\circ} \text { or } S=(4-2) \bullet 180^{\circ}=360^{\circ}
$$

Corollary 2.5.5: The sum of the measured of the exterior angles of a polygon is 360°.

Corollary 2.5.6: The measure E of each exterior angle of a regular polygon of n sides is

$$
E=\frac{360^{\circ}}{n}
$$

Example 6: Find the number of sides in a regular polygon whose exterior angles each measure 22.5°.

$$
\begin{aligned}
E=\frac{360}{h} & \Rightarrow 22.5=\frac{360}{h} \\
& \Rightarrow h=\frac{360}{22.5}=16
\end{aligned}
$$

Example 7: Find the measure of each interior angle of a stop sign.

$$
=\frac{36 \cdot 18045}{844}=135^{3}
$$

Example 8: Find the number of sides that a regular polygon has if the measure of each interior angle is 144°.

$$
\begin{aligned}
& I=\frac{(n-2) \cdot 180}{n} \\
& 144=\frac{(n-2) 180}{n} \\
& 144 n=(n-2) 180 \\
& 144 n=180 n-360
\end{aligned} \quad\left[\begin{array}{l}
360=180 n-144 n \\
360=36 n \\
\frac{360}{30}=n \\
10=n
\end{array}\right.
$$

Observation: An interior of a polygon angle and an adjacent exterior angle are supplementary.

Example 9: If an interior angle of a regular polygon measures 165°, find a) the measure of an exterior angle

$$
m(\xi+\text { terror })=180-165=15^{\circ}
$$

b) the number of sides

TRY THESE: p 101 \#'s 14, 28, 29

$165 n=180 n-360$
$360=180 n-165 n$
$360=15 \mathrm{n}$
360
$15=n$

$$
24=n
$$

Suppos

$$
\text { pos } \begin{array}{rl}
D & =44 \\
D & =\frac{n(n-3)}{2} \\
44 & =\frac{n(n-3)}{2} \\
88 & =n(n-3) \\
88 & =n^{2}+b x+c=0 \\
0 & =n^{2}-3 n-88 \\
n^{2}-3 n-88=0 & a=1 \\
n^{2}-11 n+8 n-88=0 & a-c=-88 \\
n(n-11)+8(n-11)=0 & 2.44 \\
(n-11)(n+8)=0 \\
n-11=0 & n+8=0 \\
n=11
\end{array}
$$

