Convex Polygons

Definition: A polygon is closed plane figure whose sides are line segments that intersect only endpoints.

Convex Concave

Not a Polygon

Special names for polygons with fixed numbers of sides [fill in the polygon column with the names]

Number of sides	Polygon
3	Triangle
4	Quadriateral
5	pentagon
6	Hexagon
7	Heptergon
8	octagon
9	Nona gon
10	Decagon
21	21-90n

Diagonal is a line segment that join hor-adjacent vertices.

Page 100: Number of diagonals

0 diagonals triangle

2 diagonals quadrilateral

5 diagonals pentagon

Theorem 2.5.1: The total number of diagonals D in a polygon of n sides is given by the formula $D = \frac{n(n-3)}{2}$

Example 1: Given the number of sides of a polygon find the number of diagonals.

a. Triangle
$$b = \frac{3(3-3)}{2} = \frac{3(0)}{2} = \frac{0}{2} = 0$$

Theorem 2.5.2: The sum S of the measures of the interior angles of a polygon with n sides is given by $S = (n-2) \cdot 180^{\circ}$. Note that n >2 for any polygon.

Example 2: Find the sum of the interior angles of the given polygon.

a. Triangle
$$S = (3-2)180 = 1.180 = 180^{\circ}$$

b. 11 sided polygon. $S = (11-2) | 80 = 9 (180) = 1620^{0}$

Example 3: Find the number sides a polygon has given the sum of the interior angles.

$$S = 1980$$

$$S = (n-2) 180$$

$$1980 = (n-2) 180$$

$$\frac{1980}{180} = n-2$$

$$11 = n-2$$

$$13 = n$$

Regular Polygons

Definition: A regular polygon is a polygon that is both equilateral and equiangular.

Corollary 2.4.3: the measure I of each interior angle of a regular polygon or equiangular polygon of n sides

Example 4: Find the measure of each of the interior angle of a regular hexagon.

$$T = (n-2).180 = (6-2).180$$

$$= 4.180^{30} = 120^{\circ}$$

Example 5: Each interior angle of a regular polygon is 150°. Find the number of sides.

$$150 = \frac{(n-2).180}{n}$$

$$150n = \frac{(n-2).180}{n}$$

Corollary 2.5.4: The sum of the four interior angles of a quadrilateral is
$$360^{\circ}$$
.

$$S = (n-2) \cdot 180^{\circ} \text{ or } S = (4-2) \cdot 180^{\circ} = 360^{\circ}$$

Corollary 2.5.5: The sum of the measured of the exterior angles of a polygon is 360°.

Corollary 2.5.6: The measure E of each exterior angle of a regular polygon of n sides is

$$E = \frac{360^{\circ}}{n}$$

Example 6: Find the number of sides in a regular polygon whose exterior angles each measure 22.5°.

$$E = \frac{360}{N} \Rightarrow 22.5 = \frac{360}{N}$$

$$\Rightarrow N = \frac{360}{22.5} = 16$$

Example 7: Find the measure of each interior angle of a stop sign.

Example 7: Find the measure of each interior angle of a stop sign.

$$\begin{bmatrix}
5 & 360 \\
 & 360
\end{bmatrix}$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360
\end{bmatrix}$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360$$

$$= 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 360 \\
 & 3$$

Example 8: Find the number of sides that a regular polygon has if the measure of each interior angle is 144°.

$$T = (n-2) \cdot 180$$

$$144 = (n-2) \cdot 180$$

$$360 = 180n - 144n$$

$$360 = 36n$$

$$144n = (n-2) \cdot 180$$

$$\frac{360}{36} = n$$

$$144n = 180n - 360$$

$$10 = n$$

Observation: An interior of a polygon angle and an adjacent exterior angle are supplementary.

Example 9: If an interior angle of a regular polygon measures 165°, find

a) the measure of an exterior angle

b) the number of sides

$$F = \frac{360}{n}$$

15 = $\frac{360}{n}$
 $N = \frac{360}{15} = 24$

TRY THESE: p 101 #'s 14, 28, 29

$$T = \frac{(n-2)180}{n}$$

$$165 = \frac{(n-2)180}{n}$$

$$165n = 180n - 360$$

$$360 = 180n - 165n$$

$$360 = 17n$$

$$360 = n$$

$$24 = n$$

$$ax^2+bx+c=0$$

$$\int = \frac{n(n-3)}{2}$$

$$44 = \frac{n(n-3)}{2}$$

$$88 = n(n-3)$$

$$88 = n^2 - 3n$$

$$0 = n^2 - 3n - 88$$

$$N - 11 n + 8n - 88 = 0$$

$$n(n-11) + 8(n-11) = 0$$

$$(n-11)(n+8) = 0$$

$$X = -b \pm \sqrt{b^2 - 4ac}$$

$$2a$$

2.44
4-22