Math 1312 Notes: 3.1 review and 3.2

3.1 Review

Example 1

Refer to quadrilateral DAVE.

Name the included side for $\angle 1$ and $\angle 5$. \bigcirc (a.

b. If
$$\angle 6 \cong \angle 10$$
, and $\overline{DC} \cong \overline{VC}$, then $\triangle DCA \cong \triangle \underline{VCE}$ by \underline{AS} .
 $\angle 2 \cong \angle 4 (VA)$

Given that $\angle 7 \simeq \angle 11$, $\overline{AD} \simeq \overline{EV}$, and $\overline{DC} \simeq \overline{VC}$. Can $\triangle ADC \simeq \triangle EVC$? Explain. c. JADCEDEVC AAC

Example 2.

Yes

- Name the included side for $\angle 1$ and $\angle 4$. a.
- $\overline{\text{CT}}$ is included between what two angles? b. L10 & L11

In Δ FDR, name a pair of angles so that \overline{FR} is not included. c. L2 & 24

 $\angle 1 & \angle 4$ If $\angle 1 \simeq \angle 6$, $\angle 4 \simeq \angle 3$, and $\overline{\mathsf{FR}} \simeq \overline{\mathsf{DS}}$, then $\Delta FDR \simeq \Delta \underline{\mathsf{SRD}}$ by AA = Sd.

If $\angle 4 \simeq \angle 9$, what sides would need to be congruent to show $\triangle FDR \simeq \triangle CDT$? e. 1) FD 40C 2) RD 4 DT

If $\overline{RS} \simeq \overline{TS}$ and $\overline{DR} \simeq \overline{DT}$, name a pair of angles that would create an SAS f. relationship.

Given: CD∥AE, CB≃EB Prove: ΔABE ≅ ΔDBC	A B D D
Statements	Reasons
1) CD II MG CB Z FD	1) Given
2) LABE SZDBC	2) Vertical (Sare Z
3) LE Z L C	3) CE is transversal Mt Fut LSare =
4) JABE ZJBC	4) ASA

CPCTC – Corresponding Parts of Congruent Triangles are Congruent

Once we prove two triangles are congruent, we can state that any corresponding parts are congruent by CPCTC.

Right Triangles:

<u>Postulate HL</u> - if the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

Example 1: These triangles are congruent by HL. Find the values of "x" and "y".

Example 2: Decide if each of these triangles are congruent.

Pythagorean Theorem:

The sum of the squares of the lengths of the legs of a right triangle ('a' and 'b' in the triangle shown below) is equal to the square of the length of the hypotenuse ('c').

In other words, $a^2 + b^2 = c^2$

Since we are working with lengths of sides here positive square root.

if $x^2 = p$, then $x = \sqrt{p}$ (we only need

 $\sqrt{4.3} = \sqrt{4} \cdot \sqrt{3}$

 $= \sqrt{5^{2} + 3^{2}}$

Example 3:

a. If
$$x^2 = 16$$
, then $\chi = \sqrt{16} \implies \chi = 4$
b. If $x^2 = 12$, then $\chi = \sqrt{12} \implies \chi = \sqrt{4.3} = \sqrt{4}$. $\sqrt{3} = \sqrt{4$

Example 4: Given $\triangle ABC$ is a right triangle. Use the information to find the length of the third side.

a.
$$a = 4 \text{ and } c = 8$$

 $a^{2} + b^{2} = (2^{2} - 3) + 4^{2} + b^{2} = 8^{2} = 3 + 16 + 6^{2} = 64$
 $a^{2} + b^{2} = (2^{2} - 3) + 5^{2} = 48 = 36 = 548$
 $a^{2} + b^{2} = c^{2} + 5^{2} = 64$
 $a^{3} + b^{3} = 48 = 36 = 548$
 $a^{3} + b^{3} = c^{2} + 526$
 $a^{3} + b^{3} = c^{2} + 526$
 $a^{4} + b^{2} = c^{2} + 526$

Example 5: The sides of a rectangle are 5 and 12. find the length of the diagonal.

Example 6: Find the length of side of a square if a diagonal has a length of 8.

