3.1 Review

Example 1
Refer to quadrilateral DAVE.
a. Name the included side for $\angle 1$ and $\angle 5$. D

b. If $\angle 6 \cong \angle 10$, and $\overline{D C} \cong \overline{\mathrm{VC}}$, then $\triangle D C A \cong \triangle V C E$ by A

$$
\angle 2 \cong \angle 4(V A)
$$

c. Given that $\angle 7 \cong \angle 11, \overline{\mathrm{AD}} \cong \overline{\mathrm{EV}}$, and $\overline{\mathrm{DC}} \cong \overline{\mathrm{VC}}$. Can $\triangle \mathrm{ADC} \cong \triangle \mathrm{EVC}$? Explain.

$$
\triangle A D C \cong \triangle C
$$

Example 2.

a. Name the included side for $\angle 1$ and $\angle 4$. $\overline{P D}$
b. $\quad \overline{\mathrm{CT}}$ is included between what two angles?

$$
\angle 10 \& \angle 11
$$

c. In $\triangle \mathrm{FDR}$, name a pair of angles so that $\overline{\mathrm{FR}}$ is not included.

$$
\begin{aligned}
& \angle 2 \& 24 \\
& \angle 1 \& \angle 4
\end{aligned}
$$

d. If $\angle 1 \cong \angle 6, \angle 4 \cong \angle 3$, and $\overline{F R} \cong \overline{\overline{D S}}$, then $\triangle \mathrm{FDR} \cong \triangle S R D$ by $A A S$
e. If $\angle 4 \cong \angle 9$, what sides would need to be congruent to show $\triangle \mathrm{FDR} \cong \triangle \mathrm{CDT}$?

$$
\begin{aligned}
& \text { 1) } F \text { \&DC } \\
& \text { 2) } R 1 \& D T
\end{aligned}
$$

f. If $\overline{\mathrm{RS}} \cong \overline{\mathrm{TS}}$ and $\overline{\mathrm{DR}} \cong \overline{\mathrm{DT}}$, name a pair of angles that would create an SAS relationship.

$$
\angle 3 \approx \angle 12
$$

Given: $\overline{C D} \| \overline{A E}, \overline{C B} \simeq \overline{E B}$
Prove: $\triangle \mathrm{ABE} \cong \triangle \mathrm{DBC}$

Statements	Reasons	
1) $\overline{C D} \\| \overline{A B}$	1) Given	
$\overline{C B} \cong \overline{E D}$	2) Vertical \angle Fare \cong	
2) $\angle A B E \cong \angle D B C$	3) CE Is transversal	
3) $\angle E \cong \angle C$	At Int $\angle S a r e \cong$	
4) $\triangle A B E \cong \triangle D B C$	4) ASA	

CPCTC - Corresponding Parts of Congruent Triangles are Congruent

Once we prove two triangles are congruent, we can state that any corresponding parts are congruent by CPCTC.

Right Triangles:

Postulate HL - if the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

Example 1:
These triangles are congruent by HL. Find the values of " x " and " y ".

$$
\begin{aligned}
& \overline{\mathrm{FD}}=73 \\
& \overline{\mathrm{DE}}=37 \\
& \overline{\mathrm{PQ}}=2 \mathrm{x}-1 \\
& \overline{\mathrm{RP}}=3 y+4
\end{aligned}
$$

$$
P R=D F
$$

$$
2 x-1=37
$$

$$
3 y+4=73
$$

$$
2 x=38
$$

$$
3 y=69
$$

$$
y=23
$$

Example 2:
Decide if each of these triangles are congruent.
a.

$\rightarrow A \gg$
b.

(
d.

B

S

Pythagorean Theorem:
The sum of the squares of the lengths of the legs of a right triangle ('a' and 'b' in the triangle shown below) is equal to the square of the length of the hypotenuse ('c').

if $x^{2}=p$, then $x=\sqrt{p} \quad$ (we only need
Since we are working with lengths of sides here positive square root.

Example 3:
a. If $x^{2}=16$, then

$$
x=\sqrt{16} \Rightarrow x=4
$$

b. If $x^{2}=12$, then $x=\sqrt{12} \Rightarrow x=\sqrt{4 \cdot 3}=\sqrt{4} \cdot \sqrt{3}$

$$
=2 \sqrt{3}
$$

Example 4: Given $\triangle A B C$ is a right triangle. Use the information to find the length of the third side.
a. $\quad \mathrm{a}=4$ and $\mathrm{c}=8$

$$
a^{2}+b^{2}=c^{2} \Rightarrow 4^{2}+b^{2}=8^{2} \Rightarrow 16+b^{2}=64
$$

$$
\Rightarrow b^{2}=48 \Rightarrow b=\sqrt{48}
$$

b. $\mathrm{a}=2$ and $\mathrm{b}=1$

$$
=\sqrt{16.3}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 2^{2}+1^{2}=c^{2}
\end{aligned}
$$

$$
=\sqrt{16} \cdot \sqrt{3}
$$

$$
=4 \sqrt{3}
$$

$\begin{aligned} 4+1 & =c^{2} \\ 5 & =c^{2}\end{aligned}$

$$
\Rightarrow \sqrt{5}=c
$$

Example 5: The sides of a rectangle are 5 and 12 . find the length of the diagonal.

$$
\begin{aligned}
x^{2} & =5^{2}+12^{2} \\
& =25+144 \\
& =169 \\
x & =\sqrt{169}=13
\end{aligned}
$$

Example 6: Find the length of side of a square if a diagonal has a length of 8.

$$
\begin{aligned}
x^{2}+x^{2} & =8^{2} \\
2 x^{2} & =64 \\
x^{2} & =32 \\
x & =\sqrt{32} \\
& =\sqrt{16.2}=4 \sqrt{2}
\end{aligned}
$$

