Class Notes Section 3.3 Analyzing Isosceles Triangles

In an **isosceles triangle**, the two sides that are of equal length are called the **legs** and the third side is called the **base**. The point at which the legs meet is the **vertex** and the angle there is the **vertex angle**. The two angles that include the base are called the **base angles**.

Name the parts of this isosceles triangle:

Other important triangle parts:

Definitions:

median - a segment that starts from an angle and goes to the midpoint of the

opposite side.

altitude - a segment that starts from an angle and is perpendicular to the

opposite side. AL, C \(\)

angle bisector - of a triangle...is a segment that bisects an angle and goes to the

opposite side.

perpendicular bisector - a segment that passes through the midpoint of a side

AND is perpendicular to that side.

Examples:

Thm - Corresponding altitudes of congruent triangles are congruent.

Thm - The bisector of the vertex angle of an isosceles triangle separates the triangle into two congruent triangles.

<u>Isosceles Triangle Theorem</u> - if two sides of a triangle are congruent, then the angles

opposite those sides are congruent.

AND (converse) if two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Example 1:

 $\triangle DEF$ is isosceles. $\angle D$ is the vertex angle. The m $\angle E = 2x + 40$ and the m $\angle F = 3x + 22$. Find the measures of each angle.

MLR = MLF

2x + 40 = 3x + 22 18 = x $m \angle F = 2(18) + 40 = 76$ $m/C = 76^{\circ}$ $m/C = 76^{\circ}$ $m/C = 76^{\circ}$

Example 2:

Given: ΔXYZ is equilateral

Prove: The measure of each angle of ΔXYZ is 60°

- 1) First, we have three congruent sides (given); so, their opposite angles are congruent.
- 2) Now we have three congruent angles. So, the triangle is equiangular.
- 3) So, we have an equilateral **AND** equiangular triangle.
- 5) How can we prove the three angles are each 60°? (hint: what does the sum of the angles of a triangle add up to?)

SO.....

- a triangle is equilateral **if and only if** it is equiangular.
- each angle of an equilateral triangle measures 60°.

Defn - The perimeter of a triangle is the sum of the lengths of all of its sides.

Study the chart on page 145.

Example 3:

a. In the figure below, $\overline{PQ} \cong \overline{PR}$, and \overline{PS} and \overline{ST} are medians. Find QT and QR.

$$PQ = PR - PK = 10$$
 $QT = \frac{1}{2}PQ = \frac{1}{2}(10) = 5$
 $Y = QT - Y = 5$
 $QS = 2(QS) = 2(SE) = 11$

b. \overline{KL} is an altitude of $\Delta H | K$. Find "x".

$$M \angle L + K + M \angle L + M = 90^{\circ}$$

 $9x-27 + 3x+21 = 90$
 $12x - 6 = 90$
 $12x = 96$
 $x = 8$

c. \overline{PO} is the perpendicular bisector of \overline{MN} . Find "x".

$$MP = PN$$

$$2x + C = 1C - 3x$$

$$SX = 10$$

$$X = 2$$

d. In ΔJKL, $\overline{J^K} \cong \overline{J^L}$, and $\overline{J^M}$ is both a median, and altitude, and an angle bisector. Find the following.

- 1. m∠KMJ 🤈 ()
- 2. KL 8
- 3. $m \angle KJM 90 56 = 34^{\circ}$
- 4. m/KJL $34x2 = 68^{\circ}$
- 5. m∠K 57°

Example 4:

a.
$$x = 45^{\circ}$$

c.
$$x = 3 \overline{D}$$

$$8x = 144$$

 $x = 18$

$$2x - 2\overline{5} = x + \overline{5}$$

$$x = 30$$

d. Use the figure below to find the angle measures if $m\angle 1 = 30$.

