Inequalities in a Triangle

Definition: Let a and b be real numbers a > b if and only if there is a positive number p for which a = b + p

Example 1: 7 > 2 and 5 is a positive number so 7 = 2 + 5. 7 > 2 and 7 > 5

Lemma 3.5.1: If B is between A and C on \overline{AC} , then $\overline{AC} > AB$ and $\overline{AC} > BC$. (The measure of a line segment is greater than the measure of any its parts.)

Example 1: According to the segment addition property AC = AB + BC

Lemma 3.5.2: If \overrightarrow{BD} separates $\angle ABC$ into two parts ($\angle 1$ and $\angle 2$),then the measure of $m \angle ABC$ > $\angle 1$ and $m \angle ABC$ > $\angle 2$. (The measure of an angle is greater than the measure of any its parts.)

Example 2: According to the angle addition postulate $\angle ABC = \angle 1 + \angle 2$

Lemma 3.5.3: If $\angle 3$ is an exterior angle of a triangle and $\angle 1$ and $\angle 2$ are non adjacent interior angles, then, $m \angle 3 > m \angle 1$ and $m \angle 3 > m \angle 2$. The measure of an exterior angle is greater than the measure of either of the nonadjacent angles.)

Lemma 3.5.4: In $\triangle ABC$, if $\angle C$ is aright angle or an obtuse angle, then the measure of $m \angle C$ > $m \angle B$ and $m \angle C$ > $m \angle A$.

Proof:

In $\triangle ABC$, $m \angle A + m \angle B + m \angle C = 180^\circ$. With the $m \angle C \ge 90^\circ$, it follows the $m \angle A + m \angle B \le 90^\circ$, and each angle ($m \angle A$ and $m \angle B$) must be acute. Thus $m \angle C > m \angle B$ and $m \angle C > m \angle A$.

Lemma 3.5.5: (Addition Property of Inequality) If a > b and c > d, then a + c > b + d.

Theorem 3.5.6: If one side of a triangle is longer than a second side then the measure of the angle opposite the longer side is greater than the measure of the angle opposite the shorter side.

Example 3: Given the $\triangle ABC$ with sides of the following lengths AB =4, AC = 7 and BC = 5.5. Arrange the angles by size.

AC >BC > AB MLB > MLA > MLC

Theorem 3.5.7: If the measure of one angle of a triangle is greater than the measure of a second angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.

Example 4: Given ΔRST with angles that have the following measures. Arrange the sides in order of size.

Theorem 3.5.10: (Triangle Inequality) The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given: $\triangle ABC$ Α В

BA + CA > BC

Theorem 3.5.10: (Triangle Inequality) The length of any side of a triangle must be between the sum and difference of the other two sides.

Example 5: Which of the following sets of numbers cannot represent the sides of a triangle?

a. 7, 7, 3

ナナナ=14/3 7+3=10)7-7+3=10>7

b. 4, 5, 1

D

Example 6:

Given: bisects ABC 2 BAC

Prove: AB > AD BD

Statements

 $m \angle 1 = m \angle 2$

 $3.m \angle 3 > m \angle 2$

 $_{4}$ $m \angle 3 > m \angle 1$

5. AB > 100 BD

Reasons

В

Given 1.

2. Def of L'orsector

3 L3 is the axt L to DADC

4. Subshitution

5. Opp side & Larger L (3.5.7)

Example 7:

A. Arrange sides from smallest to largest

B. Arrange angles from smallest to largest.

Example8:

List the sides of $\triangle ABC$ in order from longest to shortest.

$$m\angle A = 4x + 20$$

 $m\angle B = 2x + 10$
 $m\angle C = 4x - 20$
 $m\angle C = 4x - 20$

$$10 \times +10 = 180$$
 $M = 4(17) + 20 = 88$
 $10 \times = 170$ $M = 2(17) + 10 = 44$
 $10 \times = 17$ $M = 4(17) - 20 = 48$

Determined, Underdetermine and Overdetermined:

MLAS MLC>MLB ECS ABJAC

Determined: Draw a line segment from A perpendicular to BC so that the terminal point is on BC. (Determined because the line from A perpendicular to BC is unique.

Underdetermine: Draw a line segment from A to BC so that the terminal point is on \overline{BC} . (Undetermined because many line segments are possible.

Overdetermined: Draw a line segment from A to \overline{BC} so that it bisects BC. (Overdetermined because the line segment from A drawn perpendicular to \overline{BC} will not contain the midpoint M of \overline{BC} .

Example 9:

- a. Draw a line segment from A perpendicular to m. Describe the segment as determined, underdetermined, or overdetermined.
- b. Draw a segment AB parallel to line *m*. Describe the segment as determined, underdetermined, or overdetermined.