Ratios, Rates and Proportions

RATIOS:
The ratio of two numbers (a and b) may be written in a variety of ways. For example:

$$
\frac{a}{b} \quad a \div b \quad a \text { to } b \quad a: b
$$

In writing the ratio of two numbers, it is usually helpful to express the ratio (fraction) in simplest form. For example, the ratio of 50 to 100 is expressed as follows:

$$
\frac{50}{100}=\frac{1}{2} \quad 3 \& 6
$$

Example 1:

$$
\begin{aligned}
& \frac{3}{6}=\frac{1}{2}, 1: 2 \\
& 3: 5 \frac{3}{5}, \frac{6}{10}, \frac{30}{50}, \frac{3000}{5000}
\end{aligned}
$$

If the measure of $\angle \mathrm{A}$ is 60° and $\angle \mathrm{B}$ is a right angle, find the ratio of the $\mathrm{m} \angle \mathrm{A}$ to $\mathrm{m} \angle \mathrm{B}$. . $\frac{m \angle A}{m \angle B}=\frac{60}{90}=\frac{2}{3}$ (or $2: 3$)
order in which itis mentioned

$$
\begin{aligned}
& \qquad \begin{aligned}
\text { ratio of } m \angle B \text { to ry y import tanta }
\end{aligned} \\
& \begin{aligned}
\frac{100 \text { miles }}{10 \text { gallons }}=10 \mathrm{mpg} & =\frac{m \angle B}{m \angle A}=\frac{90}{60}
\end{aligned}=\frac{3}{2} \\
&
\end{aligned}
$$

PROPORTIONS:
An equation that states that two ratios are equal is called a proportion. The following are examples of a proportion:

$$
\frac{3}{6}=\frac{1}{2} \quad \frac{24}{16}=\frac{3}{2}
$$

In the above examples, if you cross multiply each proportion you will get the same number on both sides of the equal sign. This is always true with a proportion. A proportion can also contain variables.

Example 2:

$$
\begin{array}{lll}
\frac{3}{6}=\frac{1}{2} & 3 \times 2=6 \times 1 & 6=6 \\
\frac{x}{3}=\frac{14}{21} & 21 x=42 & x=2 \\
\frac{x}{3}=\frac{14}{21} \Rightarrow 21 \frac{x}{3}=\frac{14}{2 x} 2 x \Rightarrow \frac{21 x}{3}=14 \Rightarrow 21 x & \Rightarrow 21 x=14
\end{array}
$$

Property 1 (means-extremes)
In a proportional the product of the means equal the product of the extremes: that is if $\stackrel{a}{b} A=\sum_{d}^{c}(w h e r e b \neq 0$ and $d \neq 0)$ then $a \bullet d=c \bullet b$

Example 3:
Solve for x using Property 1: $\frac{9}{45}=\frac{21}{x}$

$$
\begin{aligned}
9 x & =45.21 \\
x & =\frac{545.21}{9}=105
\end{aligned}
$$

Example 4:

Solve for x using Property 1:

$$
\frac{x+5}{9}=\frac{x-1}{3}
$$

$$
\begin{aligned}
3(x+5) & =9(x-1) \\
3 x+15 & =9 x-9 \\
15+9 & =9 x-3 x \\
24 & =6 x \Rightarrow 4=x
\end{aligned}
$$

Property 2: In a proportion the means and extremes (or both the means and extremes) maybe interchanged so that if $\frac{a}{b}=\frac{c}{d}$,(where a, b, c, and d are non- zero) then

$$
\begin{array}{ll}
\frac{\mathbf{a}}{\mathbf{b}}=\frac{\mathbf{c}}{\mathbf{d}}, \frac{\mathbf{d}}{\mathbf{b}}=\frac{\mathbf{c}}{\mathbf{a}}, \text { and } \frac{\mathbf{d}}{\mathbf{c}}=\frac{\mathbf{b}}{\mathbf{a}} \quad \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{d}{b}=\frac{c}{a} \\
\text { Property 3: } & \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{d}{b}=\frac{c}{a} \Rightarrow \frac{d}{c}=\frac{b}{a}
\end{array}
$$

If $\frac{a}{b}=\frac{c}{d}($ where $b \neq 0$ and $d \neq 0)$, then $\frac{a+b}{b}=\frac{c+d}{d}, \frac{a-b}{b}=\frac{c-d}{d}$

Example 5:

$$
\left.\frac{a}{a+b}=\frac{c}{c+d} \quad \frac{a+b}{a-b}=\frac{c+d}{c-d} \right\rvert\, 1
$$

1. $\frac{6}{8}=\frac{3}{4} \quad \frac{6+8}{8}=\frac{3+4}{4} \Rightarrow \frac{14}{8}=\frac{7}{4}$

$$
\frac{a-b}{b}=\frac{d-c}{d}
$$

2. $\frac{6}{8}=\frac{3}{4} \quad \frac{6-8}{8}=\frac{3-4}{4} \Rightarrow \frac{-2}{8}=-\frac{1}{4}$

$$
\frac{6+8}{6-8}=\frac{3+4}{3-4} \Rightarrow \frac{14}{-2}=\frac{7}{-1}
$$

The geometric mean between two positive numbers, a and b, is the positive number, x , where:

$$
\frac{a}{x}=\frac{x}{b} \quad \Rightarrow \quad x^{2}=a b
$$

Example 6: Find the geometric mean of 4 and 9.
let x be the geometric mean of 4 \& 9

$$
\begin{aligned}
& \frac{4}{x}=\frac{x}{9} \\
& x^{2}=4 \cdot 9=36 \\
& x=\sqrt{36}= \pm 6
\end{aligned}
$$

Example 7: find the measure of the three angles of a triangle if the measures of the angles have a ratio 1: 2: 3
Let x be the common factor
st $L=x \quad \angle 1+\angle 2+\angle 3=180$
$2^{n o} L=2 x \quad x+2 x+3 x=180 \quad m \angle 1=30$
$3^{r d} L=3 x$

$$
G x=180
$$

$$
x=30
$$

$$
m \angle 2=60
$$

$$
m \angle 3=90
$$

$$
\left\{\begin{array}{l}
4: 5: 7 \\
4 x+5 x+7 x=180 \\
16 x=180 \\
x=
\end{array}\right.
$$

Example 8: $\triangle A B C$ and $\triangle \mathrm{DEF}$ have the following properties:

$$
\overline{F C} \longleftrightarrow \overline{D F}
$$

$$
\begin{array}{rl}
\frac{4}{10}=\frac{6}{y} & 4 x=5.10 \\
4 y=6.10 & x=\frac{5.10}{4}=12.5
\end{array}
$$

Example 9: A recipe calls for 4 eggs and 3 cups of milk. To prepare for a larger number of guests, a cook uses 14 eggs. How many cups of milk are needed?

$$
\begin{aligned}
& \text { egg let } x \text { milk will be needed } \\
& \text { mil } \\
& \begin{aligned}
\frac{4}{3} & =\frac{14}{x} \\
4 \cdot x & =14.3 \\
x & =\frac{14.3}{4}
\end{aligned} \\
& =10.5 \mathrm{cmps}
\end{aligned}
$$

