Two geometric figures that have exactly the same shape are similar ~
Definition: Two polygons are similar if and only if two conditions are satisfied:

1. All parts of corresponding angles are congruent.
2. All pairs of corresponding sides are proportional.

Example 1: $\triangle \mathrm{ABC} \sim \Delta \mathrm{XTN}, \mathrm{m} \angle \mathrm{A}=92^{\circ}, \mathrm{m} \angle \mathrm{T}=27^{\circ}$, find the measures of the other angles.

$$
\begin{aligned}
& m \angle A=m \angle X=92^{\circ} \\
& m \angle B=m \angle T=27^{\circ} \\
& m \angle C=m \angle N=G 1^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
m \angle A+m \angle B+m \angle C=180 \\
92+27+m \angle C=180 \\
m \angle C=61
\end{gathered}
$$

Example 2: $\triangle \mathrm{ABC} \sim \triangle \mathrm{XTN}$, if $\mathrm{AB}=7, \mathrm{AC}=4, \mathrm{BC}=8$ and $\mathrm{XT}=10$. Find the length of XN and TN.

B c

Example 3: $\triangle \overparen{\mathrm{ABC}} \sim \triangle \triangle \mathrm{DEC}$ and $\mathrm{AB} \| \mathrm{DE}$, solve for x . Given: $\overline{V_{8}}=x+4, A D=9 x+2$, $D E=9$ and $A B=48$

$$
\begin{aligned}
& \frac{D E}{A 13}=\frac{D C}{A C} \\
& \frac{9}{48}=\frac{x+4}{(9 x+2)+(x+4)} \\
& \frac{9}{48}=\frac{x+4}{10 x+6} \\
& 9(10 x+6)=48(x+4)
\end{aligned}
$$

B

$$
\begin{aligned}
& 90 x+54=48 x+192 \\
& 90 x-48 x=192-54 \\
& 42 x=138 \Rightarrow x=\frac{138}{42}
\end{aligned}
$$

Example 4: On a blueprint the length of an 18 foot room is represented by a line segment that is 3.6 inches long. What would a 15 foot room be represented by?

Scale Factor: The ratio of the lengths of two corresponding sides of two similar polygons.

The following quadrilaterals are similar ${ }_{\mathbf{j}}$

Why are they similar? Because........

1) $\angle \mathrm{A} \cong \angle \mathrm{E} \quad \angle \mathrm{B} \cong \angle \mathrm{F} \quad \angle \mathrm{C} \cong \angle \mathrm{G} \quad \angle \mathrm{D} \cong \angle \mathrm{H}$
2) $\frac{\mathrm{AB}}{\mathrm{EF}}=\frac{\mathrm{BC}}{\mathrm{FG}}=\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{DA}}{\mathrm{HE}}=\frac{2}{1} \longleftarrow$ This is the scale factor!

Example 5: Complete each statement: RSTU ~ EFGH

Complete each statement - RSTU ~ EFGH

1. $\angle \mathrm{R}=\angle \mathrm{E}$
2. $\angle S=\angle F$
3. $\angle H=L V$
4. $\angle \mathrm{G}=\angle T$
5. $\frac{\mathrm{HG}}{\mathrm{UT}}=\frac{6}{5}$
6. $\frac{\mathrm{ST}}{\mathrm{FG}}=\frac{15}{18}=\frac{5}{6}$

Example 6: determine the height of the Eiffel Tower if a person is 5.5 feet tall casts a .5 foot shadow and the Eiffel Tower casts a 90 foot shadow at the same time.

Two congruent polygons are also similar.
Question:
Two similar polygons are always congruent, true or false?
Example 7:
Which figures must be similar?

$$
\begin{aligned}
\frac{90}{0.5} & =\frac{x}{5.5} \\
x & =(90)(5.5)
\end{aligned}
$$

$$
=\frac{(90)(50)}{5}=\frac{990}{\text { feet }}
$$

a. Any two isosceles triangles

$$
\text { No, Even } 2 \text { s'sare }
$$

isus the LS many not be congruent
b. Any two regular pentagons
res, all angles are log ${ }^{\circ}$
and sides are proportional

No, angles are 90° but pairs of sides are wot in prop.
d. Any two squares

$$
\frac{2}{5}, \frac{4}{7}
$$

yes and all pairs of sides are

Example 8: Trapezoid PQRS is similar to trapezoid UTWV. Find the value of x.

a. identify the scale factor

$$
\frac{P 5}{u v}=\frac{8}{20}=2 / 5
$$

b. UT or $\mathrm{x}=$

$$
\begin{aligned}
\frac{P S}{U V}=\frac{R S}{V W} \Rightarrow \frac{8}{20}=\frac{G}{x} \Rightarrow X & =\frac{(6)(20)}{8} \\
& =15
\end{aligned}
$$

Example 9: ABCD ~ EFGH, they are both quadrilaterals.

$$
\text { Scalefactor }=\frac{A D}{E_{1}}=\frac{16}{12}
$$

a. Find $A B$.
b. Find HG .

$$
\frac{4}{3}=\frac{C D}{H G} \Rightarrow \frac{4}{3}=\frac{8}{1+G} \Rightarrow H G=\frac{2.3}{4}=6
$$

c. Find FG.

$$
\frac{4}{3}=\frac{b C}{F G} \Rightarrow
$$

Example 10:
$\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$. The scale factor of $\triangle \mathrm{ABC}$ to $\Delta \mathrm{DEF}$ is $3 / 7$. Draw a picture and then complete each statement.
a. If $\mathrm{AB}=15$, then $\mathrm{DE}=$

$$
\begin{aligned}
& \frac{4}{3}=\frac{4}{F G} \\
& \triangle D E F \text { is } 3 / 7 . \text { Draw } \\
& \frac{B C}{E F}=\frac{A C}{D F}
\end{aligned}
$$

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

b. If $\mathrm{EF}=42$, then $\mathrm{BC}=$
c. If $\mathrm{DF}=56$, then $\mathrm{AC}=\frac{3}{7}=\frac{B C}{E F} \Rightarrow \frac{3}{7}=\frac{B C}{42} \Rightarrow B C=\frac{3.42}{7}=18$

$$
\frac{3}{7}=\frac{A C}{D F} \Rightarrow \frac{3}{7}=\frac{A C}{56} \Rightarrow A C=\frac{3.56}{7}=24
$$

Example 11: In order to find the distance AB across a lake, a surveyor constructed $\triangle \mathrm{OCD}$ similar to Δ OBA. He measured OB (36 m), OC (20 m), and CD (150m) directly to obtain the lengths shown. Find the length of AB .

$$
\begin{aligned}
& \frac{O L}{O B}=\frac{C P}{A B} \quad \sqrt{\frac{O C}{O B}=\frac{C D}{A B}=\frac{O D}{O A}} \\
& \frac{2 O}{36}=\frac{150}{A B} \quad 18=\frac{157}{2 \phi}
\end{aligned}
$$

Example 12: $\Delta \mathrm{RST} \sim \Delta \mathrm{RUV}$ find x and y

$$
\begin{aligned}
& \frac{18}{24}=\frac{16}{y} \\
& \frac{3}{4}=\frac{16}{y} \\
& 3 y=\frac{16.4}{3}=\frac{64}{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{18}{24} & =\frac{21}{21+x} \\
\frac{3}{4} & =\frac{21}{21+x} \\
3(21+x) & =21 \cdot 4 \\
21+x & =\frac{21 \cdot 4}{3} \\
21+x & =28 \\
x & =7
\end{aligned}
$$

