Postulate 15: If the three angles of one triangle are congruent to the three angles of a second triangle, then the triangles are similar (AAA).

Corollary 5.3.1: If two angles of one triangle are congruent to the two angles of another triangle, then the triangle are similar (AA).
(AA):
If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Example 1:

Given: $\angle A \cong \angle P$,

Conclusion:

$$
\triangle A B C \sim \triangle P T R
$$

(SSS):
If each side of one triangle and the corresponding side of another triangle are proportional, then the triangles are similar.

Example 2:

Given $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$

Conclusion:
$\triangle A B C \sim \triangle P Q R$

(LAS):
If the measures of two sides of one triangle are proportional to the corresponding sides of another triangle AND the included angles are congruent, then the triangles are similar.

Example 3:
Given: $\frac{A B}{P Q}=\frac{B C}{Q R}$ and $\angle B \cong \angle Q$

Conclusion:

$\triangle A B C \sim \triangle P R R$

Example 4: In the figure below, $A B \| D E, D A=2, C A=8$, and $C E=3$. Find $C B$.

In $\triangle C D E \& \triangle C A B$

$$
\left.\begin{array}{l}
\angle D \cong \angle A \\
\angle E \cong \angle B
\end{array}\right\} \text { fores } \angle S
$$

$\triangle C D E \sim \triangle C A B$

RULES:

$$
C B=3+1=4
$$

1) If two triangles are similar, then the perimeters are proportional to the measures of corresponding sides.
2) If two triangles are similar, then the measures of the corresponding altitudes (form 90°) are proportional to the measures of the corresponding sides.
3) If two triangles are similar, then the measures of the corresponding angle bisectors of the triangles are proportional to the measures of the corresponding sides.
4) If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.

Example 5:

$$
p_{2} \rightarrow n
$$

$\triangle A B D \sim \triangle A D C$. If $A D=16, A C=31$, and $D C=23$, find the perimeter of $\triangle A B D$.

CSSTP: Corresponding sides of similar triangles are proportional.
CASTC: Corresponding angles of similar triangles are congruent.
Theorem 5.3.2: The lengths of the corresponding altitudes of similar triangles have the same ratio as the lengths of any pair of corresponding sides.

Example 6:

$\triangle P Q R \sim \Delta T U V$. IF QO is an altitude of $\triangle P Q R$, and US is an altitude of $\Delta T U V$, then complete the following:

$$
\begin{aligned}
& \frac{\mathbf{Q O}}{\mathbf{U S}}=\frac{\mathbf{Q R}}{? U V} \\
& \frac{\mathbf{Q O}}{\mathbf{U S}}=\frac{?}{\mathbf{T U}} P Q
\end{aligned}
$$

Example 7: Find the value of x and y.

$$
\begin{aligned}
& \Delta \mathrm{PQR} \sim \Delta \mathrm{SQT} \\
& \text { C } \\
& \frac{P Q}{\delta Q}=\frac{Q R}{Q \tau}=\frac{P R}{S T} \\
& \frac{x}{6}=\frac{y^{\prime}}{10}=\frac{12}{8} \\
& \frac{x}{6}=\frac{12}{8} \quad \frac{y}{10}=\frac{12}{8} \\
& x={ }^{3} 6 \cdot \frac{123}{84}=9 \quad y=\frac{10^{5} \cdot 12}{82}=15
\end{aligned}
$$

Example 8:

a.
$\mathrm{x}=$ \qquad

b) $x=$ \qquad

$\frac{12}{32}=\frac{x-5}{2 x-3}$
$12(2 x-3)=32(x-5)$
$24 x-36=32 x-160$
$160-36=32 x-24 x$
$124=8 x \Rightarrow 15.5=x$
Theorem 5.3.3: (SAS ~) If an angle of one triangle is congruent to an angle of a second triangle and the pairs of sides including the angles are proportional, then the triangles are similar.

Theorem 5.3.4:(SSS ~) If the three sides of one triangle are proportional to the three consecutive sides of one second triangle, then the triangles are similar.

Example 9:
Determine if the triangles are similar and give a reason for your answer (AA, SSS, SAS).
a. similar? Yes reason

c. similar? Yes reason SSS.

b. reason Yes similar? SAS

d. similar? \qquad Yes reason $A-\mathcal{A}$

Example 10: In the figure below, $F G \cong E G, B E=15, C F=20, A E=9, D F=12$. Determine which triangles in the figure are similar.

$$
\begin{aligned}
& m L C F E=m \angle B E F \\
& \frac{A E}{D F}=\frac{9}{12}=\frac{3}{4} \\
& \frac{B E}{C F}=\frac{15}{20}=\frac{3}{4} \\
& \therefore \frac{A E}{D F}=\frac{B E}{D F} \\
& A E B \sim \triangle D F L \quad(5 A S)
\end{aligned}
$$

Lemma 5.3.5: If a line segment divides two side of a triangle proportionally, then this line segment is parallel to the third side.

Example 11:
Given $\triangle \mathrm{ABC} \sim \Delta \mathrm{DBE}$

If $\mathrm{AC}=10, \mathrm{DE}=8, \mathrm{AD}=4$. Find DB

$$
\frac{A B}{D B}=\frac{B C}{B E}=\frac{A C}{D E}
$$

Example 12:
Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{DBE}$
$C B=12, C E=8, A D=4$.
Find BD

A

$$
\begin{aligned}
& \frac{A B}{B D}=\frac{A C}{D E} \\
& \frac{4+x}{x}=\frac{10}{8} \\
& 8(4+x)=10 x \Rightarrow 32 \Rightarrow 8 x=10 x \\
& \begin{array}{l}
\Rightarrow 32=2 x \\
\Rightarrow 16=x
\end{array}
\end{aligned}
$$

